41 research outputs found

    Evaluation of fast, high-detail projected light 3D sensing for robots in construction

    Full text link
    © 2019 IEEE. Robots used on-site in construction need to perceive the surrounding environment to operate autonomously. This is challenging as the construction environment is often less than ideal due to changing lighting conditions, turbid air, and the need to detect fine details. In this work we evaluate a custom made projected light 3D sensor system for suitability and practicality in enabling autonomous robotics for construction. A series of tests are performed to evaluate the sensor based on ability to capture environmental details, operate robustly in challenging lighting conditions, and make accurate geometric measurements. Analysis shows that high fidelity measurements with accuracy in the order of millimeters can be obtained, making the technology a promising solution for robots operating in construction environments

    Robotic disassembly of waste electrical and electronic equipment

    Full text link
    Waste electrical and electronic equipment (WEEE) is the world’s fastest growing form of waste. Inappropriate disposal of WEEE causes damage to ecosystems and local communities due to hazardous materials and toxic chemicals present in electronic products. High value metals in small quantities are dissipated and embodied energy from manufacturing are lost in shredding and crushing treatments of WEEE. On the other hand, manual disassembly is costly and presents safety concerns for human workers. Therefore, robotic disassembly is an ideal approach to addressing the treatment of WEEE. Despite extensive research in the field, large variations and uncertainties in product structures, models, and conditions is a major limitation to the implementation of automation and robotics in the waste industry. The ability of a robotic disassembly system to learn new product structures and reason about existing knowledge of product structure is vital to addressing this challenge. This thesis explores robotic disassembly for WEEE by building upon an existing research disassembly rig for LCD monitors and expanding it to address other product families. The updated disassembly system utilizes a modular framework consisting of a Cognition module, Perception module, and Operation module, in order to address the uncertainties present in end-of-life (EoL) products. A novel disassembly ontology is designed and developed with an upper and lower ontology structure to represent generic disassembly knowledge and product-family-specific knowledge respectively. Furthermore, a Learning framework enables automated expansion of the ontology using past disassembly experiences and user-demonstration. These presented methodologies form the main function of the Cognition module, which aids the Perception module and instructs the Operation module. The disassembly ontology and Learning framework are verified independently from the rest of the system prior to being integrated and validated with real disassembly runs of LCD monitors and keyboards. As such, the disassembly system’s ability to address both known and unknown EoL product types, as well as learn new product types, is demonstrated

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    Computing gripping points in 2D parallel surfaces via polygon clipping

    Get PDF
    corecore