209 research outputs found

    Design of a wearable skin stretch cutaneous device for the upper limb

    Get PDF
    This paper presents a novel cutaneous device capable of providing independent skin stretches at the palmar, dorsal, ulnar, and radial sides of the arm. It consists of a lightweight bracelet with four servo motors. Each motor actuates a cylindrical shaped end-effector that is able to rotate, generating skin stretch stimuli. To understand how to control and wear the device on the forearm to evoke the most effective cutaneous sensations, we carried out perceptual experiments evaluating its absolute and differential thresholds. Finally, we carried out an experiment of haptic navigation to assess the effectiveness of our device as a navigation feedback system to guide a desired rotation and translation of the forearm. Results demonstrate an average rotation and translation error of 1.87○ and 2.84 mm, respectively. Moreover, all the subjects found our device easy to wear and comfortable. Nine out of ten found it effective in transmitting navigation information to the forearm

    Effects of Haptic Feedback on the Wrist during Virtual Manipulation

    Full text link
    As an alternative to thimble devices for the fingertips, we investigate haptic systems that apply stimulus to the user's forearm. Our aim is to provide effective interaction with virtual objects, despite the lack of co-location of virtual and real-world contacts, while taking advantage of relatively large skin area and ease of mounting on the forearm. We developed prototype wearable haptic devices that provide skin deformation in the normal and shear directions, and performed a user study to determine the effects of haptic feedback in different directions and at different locations near the wrist during virtual manipulation. Participants performed significantly better while discriminating stiffness values of virtual objects with normal forces compared to shear forces. We found no differences in performance or participant preferences with regard to stimulus on the dorsal, ventral, or both sides of the forearm.Comment: 7 pages, submitted conference paper for IEEE Haptics Symposium 202

    Effects of Haptic Feedback on the Wrist during Virtual Manipulation

    Get PDF
    We propose a haptic system for virtual manipulation to provide feedback on the user's forearm instead of the fingertips. In addition to visual rendering of the manipulation with virtual fingertips, we employ a device to deliver normal or shear skin-stretch at multiple points near the wrist. To understand how design parameters influence the experience, we investigated the effect of the number and location of sensory feedback on stiffness perception. Participants compared stiffness values of virtual objects, while the haptic bracelet provided interaction feedback on the dorsal, ventral, or both sides of the wrist. Stiffness discrimination judgments and duration, as well as qualitative results collected verbally, indicate no significant difference in stiffness perception with stimulation at different and multiple locations.Comment: 2 pages, work-in-progress paper on haptics symposium, 202

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 12th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2020, held in Leiden, The Netherlands, in September 2020. The 60 papers presented in this volume were carefully reviewed and selected from 111 submissions. The were organized in topical sections on haptic science, haptic technology, and haptic applications. This year's focus is on accessibility

    Instruction with 3D Computer Generated Anatomy

    No full text
    Research objectives. 1) To create an original and useful software application; 2) to investigate the utility of dyna-linking for teaching upper limb anatomy. Dyna-linking is an arrangement whereby interaction with one representation automatically drives the behaviour of another representation. Method. An iterative user-centred software development methodology was used to build, test and refine successive prototypes of an upper limb software tutorial. A randomised trial then tested the null hypothesis: There will be no significant difference in learning outcomes between participants using dyna-linked 2D and 3D representations of the upper limb and those using non dyna-linked representations. Data was analysed in SPSS using factorial analysis of variance (ANOVA). Results and analysis. The study failed to reject the null hypothesis as there was no signi cant di fference between experimental conditions. Post-hoc analysis revealed that participants with low prior knowledge performed significantly better (p = 0.036) without dyna-linking (mean gain = 7.45) than with dyna-linking (mean gain = 4.58). Participants with high prior knowledge performed equally well with or without dyna-linking. These findings reveal an aptitude by treatment interaction (ATI) whereby the effectiveness of dyna-linking varies according to learner ability. On average, participants using the non dyna-linked system spent 3 minutes and 4 seconds longer studying the tutorial. Participants using the non dyna-linked system clicked 30% more on the representations. Dyna-linking had a high perceived value in questionnaire surveys (n=48) and a focus group (n=7). Conclusion. Dyna-linking has a high perceived value but may actually over-automate learning by prematurely giving novice learners a fully worked solution. Further research is required to confirm if this finding is repeated in other domains, with different learners and more sophisticated implementations of dyna-linking
    corecore