1,089 research outputs found

    Collaborative MR Workspace with Shared 3D Vision Based on Stereo Video Transmission

    Get PDF
    P.R.China Mixed reality (MR) research aims to develop technologies that inputting or mixing the rea

    Collaborative Workspaces within Distributed Virtual Environments

    Get PDF
    In warfare, be it a training simulation or actual combat, a commander\u27s time is one of the most valuable and fleeting resources of a military unit. Thus, it is natural for a unit to have a plethora of personnel to analyze and filter information to the decision-maker. This dynamic exchange of ideas between analyst and commander is currently not available within the distributed interactive simulation (DIS) community. This lack of exchange limits the usefulness of the DIS experience to the commander and his troops. This thesis addresses the commander\u27s isolation problem through the integration of a collaborative workspace within AFIT\u27s Synthetic BattleBridge (SBB) as a technique to improve situational awareness. The SBB\u27s Collaborative Workspace enhances battlespace awareness through CSCW (computer supported cooperative work) enabling communication technologies. The SBB\u27s Collaborative Workspace allows the user to interact with other SBB users through the transmission and reception of public bulletins, private email, real-time chat sessions, shared viewpoints, shared video, and shared annotations to the virtual environment. Collaborative communication between SBB occurs through the use of standard and experimental DIS-compliant protocol data units. The SBB\u27s Collaborative Workspace gives the battlespace commander the widest range of communication options available within a DIS virtual environment today

    Designing to Support Workspace Awareness in Remote Collaboration using 2D Interactive Surfaces

    Get PDF
    Increasing distributions of the global workforce are leading to collaborative workamong remote coworkers. The emergence of such remote collaborations is essentiallysupported by technology advancements of screen-based devices ranging from tabletor laptop to large displays. However, these devices, especially personal and mobilecomputers, still suffer from certain limitations caused by their form factors, that hinder supporting workspace awareness through non-verbal communication suchas bodily gestures or gaze. This thesis thus aims to design novel interfaces andinteraction techniques to improve remote coworkers’ workspace awareness throughsuch non-verbal cues using 2D interactive surfaces.The thesis starts off by exploring how visual cues support workspace awareness infacilitated brainstorming of hybrid teams of co-located and remote coworkers. Basedon insights from this exploration, the thesis introduces three interfaces for mobiledevices that help users maintain and convey their workspace awareness with their coworkers. The first interface is a virtual environment that allows a remote person to effectively maintain his/her awareness of his/her co-located collaborators’ activities while interacting with the shared workspace. To help a person better express his/her hand gestures in remote collaboration using a mobile device, the second interfacepresents a lightweight add-on for capturing hand images on and above the device’sscreen; and overlaying them on collaborators’ device to improve their workspace awareness. The third interface strategically leverages the entire screen space of aconventional laptop to better convey a remote person’s gaze to his/her co-locatedcollaborators. Building on the top of these three interfaces, the thesis envisions an interface that supports a person using a mobile device to effectively collaborate with remote coworkers working with a large display.Together, these interfaces demonstrate the possibilities to innovate on commodity devices to offer richer non-verbal communication and better support workspace awareness in remote collaboration

    Augmented Reality and Robotics: A Survey and Taxonomy for AR-enhanced Human-Robot Interaction and Robotic Interfaces

    Get PDF
    This paper contributes to a taxonomy of augmented reality and robotics based on a survey of 460 research papers. Augmented and mixed reality (AR/MR) have emerged as a new way to enhance human-robot interaction (HRI) and robotic interfaces (e.g., actuated and shape-changing interfaces). Recently, an increasing number of studies in HCI, HRI, and robotics have demonstrated how AR enables better interactions between people and robots. However, often research remains focused on individual explorations and key design strategies, and research questions are rarely analyzed systematically. In this paper, we synthesize and categorize this research field in the following dimensions: 1) approaches to augmenting reality; 2) characteristics of robots; 3) purposes and benefits; 4) classification of presented information; 5) design components and strategies for visual augmentation; 6) interaction techniques and modalities; 7) application domains; and 8) evaluation strategies. We formulate key challenges and opportunities to guide and inform future research in AR and robotics

    Periscope: A Robotic Camera System to Support Remote Physical Collaboration

    Full text link
    We investigate how robotic camera systems can offer new capabilities to computer-supported cooperative work through the design, development, and evaluation of a prototype system called Periscope. With Periscope, a local worker completes manipulation tasks with guidance from a remote helper who observes the workspace through a camera mounted on a semi-autonomous robotic arm that is co-located with the worker. Our key insight is that the helper, the worker, and the robot should all share responsibility of the camera view--an approach we call shared camera control. Using this approach, we present a set of modes that distribute the control of the camera between the human collaborators and the autonomous robot depending on task needs. We demonstrate the system's utility and the promise of shared camera control through a preliminary study where 12 dyads collaboratively worked on assembly tasks. Finally, we discuss design and research implications of our work for future robotic camera systems that facilitate remote collaboration.Comment: This is a pre-print of the article accepted for publication in PACM HCI and will be presented at CSCW 202
    • …
    corecore