3 research outputs found

    Multistage throttling characteristics of reverse direction impact of pilot operated check valve

    Get PDF
    The aim of this study was to improve the reverse impact characteristics of large-flow pilot operated check valves, meanwhile reduce oscillation, cavitation and unloading time. Three different main poppets were selected, and the impact pressure and flow were set as 30 MPa and 1000 L/min, respectively. The cavitation phenomenon was explored based on the analysis of gas-liquid two-phase flow by Fluent software, and then experimental verification was performed. Meanwhile, the dynamic characteristics of pilot operated check valves were analyzed by the impact test system. The simulation results showed that the fluid pressure clearly decreased while flowing through the poppet area. The sudden decrease of flow area at the orifice port of the poppet resulted in an increase in flow-velocity, because the cavitation area appears on the side of the main poppet. A stepped throttling structure could effectively reduce the cavitation area, preventing the generation of cavitation. The experimental results showed that the pressure oscillation of a stepped main poppet significantly reduced during the process of unloading, at 28.41 MPa; with a flow gradient of 4.86×105 L/min2; unloading time significantly reduced, for 711 ms; indicating it opened more rapidly and dynamic characteristics was superior. It can be concluded that the stepped throttling structure could effectively reduce the pressure oscillation of a pilot operated check valve during the process of unloading, improve response speed, enhance the impact properties, and reduce cavitation. This verified the correctness of the simulation and the rationality of the cavitation index

    Development of Cam-Drive Type Proportional Valve for Water Hydraulics

    No full text

    Novel Water Hydraulic On/Off Valves and Tracking Control Method for Equal Coded Valve System

    Get PDF
    Water hydraulics is an interesting alternative to oil hydraulics since it uses a clean, environment friendly, and non-inflammable pressure medium. However, the availability of good control valves, which are essential components in many hydraulic systems, is limited in water hydraulics owing to the challenging characteristics of water. This, in turn, considerably limits the application of water hydraulics. In this thesis, a new digital hydraulic valve technology is investigated in order to promote the applicability of this clean technology; the method using equal-size on/off valves is preferred.This equal coding method suffers from a lack of suitable valves. Thus, a fast-acting and low-power-consuming miniature valve is developed. The valve development is based on previous experience with oil hydraulic miniature valves and is carried out mainly with heuristic methods, by using simplified electromagnetic equations and scaling. However, the prototypes show good properties for the intended purpose. As another challenge, a high number of these valves are needed in order to achieve sufficient resolution for demanding control. To decrease this requirement, the circulating switching control method is proposed, which can increase the effective flow resolution of the valve system using the existing valves. The method divides the switching duty equally among the valves and can diminish the drawbacks that exist in typical non-circulating switching control.As the main goal, a water hydraulic servo axis was implemented using the developed miniature valves and the control method. The control system comprises a simple model based valve controller as the lower level part and a filtered P-controller as the upper level motion controller. Excellent tracking and positioning accuracy was achieved with a valve system having 16 miniature valves in total and using this relatively simple controller structure. This verifies that high-performance water hydraulic motion control can be realized with a reasonable effort using on/off seat valves. This gives hope for increasing the applicability of water hydraulics
    corecore