3 research outputs found

    BioSentinel: Mission Summary and Lessons Learned From the First Deep Space Biology CubeSat Mission

    Get PDF
    Launched on Artemis I, BioSentinel carries a biology experiment into deep space for the first time in 50 years. A 6U CubeSat form factor was utilized for the spacecraft, which included technologies newly developed or adapted for operations beyond Earth orbit. The spacecraft carries onboard budding yeast, Saccharomyces cerevisiae, as an analog to human cells to test the biological response to deep space radiation. This was the maiden deep-space voyage for many of the subsystems, and the first time to evaluate their performance in flight operation. Flying a CubeSat beyond LEO comes with unique challenges with respect to trajectory uncertainty and mission operations planning. The nominal plan was a lunar fly-by, followed by an insertion into heliocentric orbit. However, some possible scenarios included lunar eclipses that could have severely impacted the power budget during that phase of the mission, while others could have resulted in a “retrograde” hyperbola at swing-by resulting in the spacecraft traveling inward toward Earth or even towards a collision with the lunar surface. The commissioning phase of the mission was successful and completed a week ahead of schedule. It did not come without its exciting moments and challenges. First contact with the spacecraft uncovered that the vehicle was unexpectedly tumbling after deployment, a situation that needed to be corrected urgently. The mission operations team executed a contingency plan to stabilize the spacecraft, with just moments to spare before the battery ran out of power. The BioSensor payload onboard the spacecraft is a complex instrument that includes microfluidics, optical systems, sensor control electronics, as well as the living yeast cells. BioSentinel also includes a TimePix radiation sensor implemented by JSC’s RadWorks group. Total dose and Linear Energy Transfer (LET) spectrum data are compared to the rate of cell growth and metabolic activity measured in the S. cerevisiae cells. BioSentinel mature nanosatellite technologies included: deep space communications and navigation, autonomous attitude control and momentum management, and micro-propulsion systems, to provide an adaptable nanosatellite platform for deep space uses. This paper discusses the performance of the BioSentinel spacecraft through the mission phase, and includes lessons learned from challenges and anomalies. BioSentinel had many successes and will be a pathfinder for future deep space CubeSats and biology missions

    Lessons Learned During the Implementation of a Cold Gas Propulsion System for the SunRISE Mission

    Get PDF
    The SunRISE mission utilizes a two-phase cold gas propulsion system, which provides several advantages over other cold gas systems but experienced challenges during assembly and testing. Since 2020, Georgia Tech Research Corporation (GTRC), Utah State University Space Dynamics Laboratory (SDL), and the Jet Propulsion Laboratory (FPL) have implemented several improvements to the SunRISE propulsion system. The SunRISE propulsion system leverages an additively manufactured monolithic structure, commercial off-the-shelf (COTS) valves and transducers, and the benign working fluid R-236fa to provide a suitable propulsion system for the SunRise mission. While the GTRC propulsion system had been developed for other missions, the multi-organizational team found and corrected several previously undetected design issues, including filters with highly variable flow performance, solenoid valve drive circuit issues, and inconsistencies in the tank additive manufacturing process that impacted manufacturing yield, thrust consistency, and quality of seals. Leaks in metallic fittings were also identified, and process improvements were put in place to mitigate them. Solenoid valve stiction was the last issue which was mitigated through valve screening and drive circuit adjustments. In this paper, we present lessons learned from the SunRISE propulsion system effort to aid future teams in identifying and addressing similar issues

    Development and Testing of a 3-D-Printed Cold Gas Thruster for an Interplanetary CubeSat

    Get PDF
    © Copyright 2018 IEEEThis paper describes the development and testing of a cold gas attitude control thruster produced for the BioSentinel spacecraft, a CubeSat that will operate beyond Earth orbit. The thruster will reduce the spacecraft rotational velocity after deployment, and for the remainder of the mission it will periodically unload momentum from the reaction wheels. The majority of the thruster is a single piece of 3-D-printed additive material which incorporates the propellant tanks, feed pipes, and nozzles. Combining these elements allows for more efficient use of the available volume and reduces the potential for leaks. The system uses a high-density commercial refrigerant as the propellant, due to its high volumetric impulse efficiency, as well as low toxicity and low storage pressure. Two engineering development units and one flight unit have been produced for the BioSentinel mission. The design, development, and test campaign for the thruster system is presented
    corecore