Lessons Learned During the Implementation of a Cold Gas Propulsion System for the SunRISE Mission

Abstract

The SunRISE mission utilizes a two-phase cold gas propulsion system, which provides several advantages over other cold gas systems but experienced challenges during assembly and testing. Since 2020, Georgia Tech Research Corporation (GTRC), Utah State University Space Dynamics Laboratory (SDL), and the Jet Propulsion Laboratory (FPL) have implemented several improvements to the SunRISE propulsion system. The SunRISE propulsion system leverages an additively manufactured monolithic structure, commercial off-the-shelf (COTS) valves and transducers, and the benign working fluid R-236fa to provide a suitable propulsion system for the SunRise mission. While the GTRC propulsion system had been developed for other missions, the multi-organizational team found and corrected several previously undetected design issues, including filters with highly variable flow performance, solenoid valve drive circuit issues, and inconsistencies in the tank additive manufacturing process that impacted manufacturing yield, thrust consistency, and quality of seals. Leaks in metallic fittings were also identified, and process improvements were put in place to mitigate them. Solenoid valve stiction was the last issue which was mitigated through valve screening and drive circuit adjustments. In this paper, we present lessons learned from the SunRISE propulsion system effort to aid future teams in identifying and addressing similar issues

    Similar works