5,067 research outputs found

    Attention Allocation for Human Multi-Robot Control: Cognitive Analysis based on Behavior Data and Hidden States

    Get PDF
    Human multi-robot interaction exploits both the human operator’s high-level decision-making skills and the robotic agents’ vigorous computing and motion abilities. While controlling multi-robot teams, an operator’s attention must constantly shift between individual robots to maintain sufficient situation awareness. To conserve an operator’s attentional resources, a robot with self reflect capability on its abnormal status can help an operator focus her attention on emergent tasks rather than unneeded routine checks. With the proposing self-reflect aids, the human-robot interaction becomes a queuing framework, where the robots act as the clients to request for interaction and an operator acts as the server to respond these job requests. This paper examined two types of queuing schemes, the self-paced Open-queue identifying all robots’ normal/abnormal conditions, whereas the forced-paced shortest-job-first (SJF) queue showing a single robot’s request at one time by following the SJF approach. As a robot may miscarry its experienced failures in various situations, the effects of imperfect automation were also investigated in this paper. The results suggest that the SJF attentional scheduling approach can provide stable performance in both primary (locate potential targets) and secondary (resolve robots’ failures) tasks, regardless of the system’s reliability levels. However, the conventional results (e.g., number of targets marked) only present little information about users’ underlying cognitive strategies and may fail to reflect the user’s true intent. As understanding users’ intentions is critical to providing appropriate cognitive aids to enhance task performance, a Hidden Markov Model (HMM) is used to examine operators’ underlying cognitive intent and identify the unobservable cognitive states. The HMM results demonstrate fundamental differences among the queuing mechanisms and reliability conditions. The findings suggest that HMM can be helpful in investigating the use of human cognitive resources under multitasking environments

    From Biological to Synthetic Neurorobotics Approaches to Understanding the Structure Essential to Consciousness (Part 3)

    Get PDF
    This third paper locates the synthetic neurorobotics research reviewed in the second paper in terms of themes introduced in the first paper. It begins with biological non-reductionism as understood by Searle. It emphasizes the role of synthetic neurorobotics studies in accessing the dynamic structure essential to consciousness with a focus on system criticality and self, develops a distinction between simulated and formal consciousness based on this emphasis, reviews Tani and colleagues' work in light of this distinction, and ends by forecasting the increasing importance of synthetic neurorobotics studies for cognitive science and philosophy of mind going forward, finally in regards to most- and myth-consciousness

    Operationalized Intent for Improving Coordination in Human-Agent Teams

    Get PDF
    With the increasing capabilities of artificial intelligent agents (AIAs) integrated into multi-agent systems, future concepts include human-agent teams (HATs) in which the members perform fluidly as a coordinated team. Research on coordination mechanisms in HATs is largely focused on AIAs providing information to humans to coordinate better (i.e. coordination from the AIA to the human). We focus on the compliment where AIAs can understand the operator to better synchronize with the operator (i.e. from the human to the AIA). This research focuses specifically on AIA estimation of operator intent. We established the Operationalized Intent framework which captures intent in a manner relevant to operators and AIAs. The core of operationalized intent is a quality goal hierarchy and an execution constraint list. Designing a quality goal hierarchy entails understanding the domain, the operators, and the AIAs. By extending established cognitive systems engineering analyses we developed a method to define the quality goals and capture the situations that influence their prioritization. Through a synthesis of mental model evaluation techniques, we defined and executed a process for designing human studies of intent. This human-in-the-loop study produced a corpus of data which was demonstrated the feasibility of estimating operationalized intent

    Agent AI: Surveying the Horizons of Multimodal Interaction

    Full text link
    Multi-modal AI systems will likely become a ubiquitous presence in our everyday lives. A promising approach to making these systems more interactive is to embody them as agents within physical and virtual environments. At present, systems leverage existing foundation models as the basic building blocks for the creation of embodied agents. Embedding agents within such environments facilitates the ability of models to process and interpret visual and contextual data, which is critical for the creation of more sophisticated and context-aware AI systems. For example, a system that can perceive user actions, human behavior, environmental objects, audio expressions, and the collective sentiment of a scene can be used to inform and direct agent responses within the given environment. To accelerate research on agent-based multimodal intelligence, we define "Agent AI" as a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data, and can produce meaningful embodied actions. In particular, we explore systems that aim to improve agents based on next-embodied action prediction by incorporating external knowledge, multi-sensory inputs, and human feedback. We argue that by developing agentic AI systems in grounded environments, one can also mitigate the hallucinations of large foundation models and their tendency to generate environmentally incorrect outputs. The emerging field of Agent AI subsumes the broader embodied and agentic aspects of multimodal interactions. Beyond agents acting and interacting in the physical world, we envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment

    Understanding, Assessing, and Mitigating Safety Risks in Artificial Intelligence Systems

    Get PDF
    Prepared for: Naval Air Warfare Development Center (NAVAIR)Traditional software safety techniques rely on validating software against a deductively defined specification of how the software should behave in particular situations. In the case of AI systems, specifications are often implicit or inductively defined. Data-driven methods are subject to sampling error since practical datasets cannot provide exhaustive coverage of all possible events in a real physical environment. Traditional software verification and validation approaches may not apply directly to these novel systems, complicating the operation of systems safety analysis (such as implemented in MIL-STD 882). However, AI offers advanced capabilities, and it is desirable to ensure the safety of systems that rely on these capabilities. When AI tech is deployed in a weapon system, robot, or planning system, unwanted events are possible. Several techniques can support the evaluation process for understanding the nature and likelihood of unwanted events in AI systems and making risk decisions on naval employment. This research considers the state of the art, evaluating which ones are most likely to be employable, usable, and correct. Techniques include software analysis, simulation environments, and mathematical determinations.Naval Air Warfare Development CenterNaval Postgraduate School, Naval Research Program (PE 0605853N/2098)Approved for public release. Distribution is unlimite

    Humanoid-based protocols to study social cognition

    Get PDF
    Social cognition is broadly defined as the way humans understand and process their interactions with other humans. In recent years, humans have become more and more used to interact with non-human agents, such as technological artifacts. Although these interactions have been restricted to human-controlled artifacts, they will soon include interactions with embodied and autonomous mechanical agents, i.e., robots. This challenge has motivated an area of research related to the investigation of human reactions towards robots, widely referred to as Human-Robot Interaction (HRI). Classical HRI protocols often rely on explicit measures, e.g., subjective reports. Therefore, they cannot address the quantification of the crucial implicit social cognitive processes that are evoked during an interaction. This thesis aims to develop a link between cognitive neuroscience and human-robot interaction (HRI) to study social cognition. This approach overcomes methodological constraints of both fields, allowing to trigger and capture the mechanisms of real-life social interactions while ensuring high experimental control. The present PhD work demonstrates this through the systematic study of the effect of online eye contact on gaze-mediated orienting of attention. The study presented in Publication I aims to adapt the gaze-cueing paradigm from cognitive science to an objective neuroscientific HRI protocol. Furthermore, it investigates whether the gaze-mediated orienting of attention is sensitive to the establishment of eye contact. The study replicates classic screen-based findings of attentional orienting mediated by gaze both at behavioral and neural levels, highlighting the feasibility and the scientific value of adding neuroscientific methods to HRI protocols. The aim of the study presented in Publication II is to examine whether and how real-time eye contact affects the dual-component model of joint attention orienting. To this end, cue validity and stimulus-to-onset asynchrony are also manipulated. The results show an interactive effect of strategic (cue validity) and social (eye contact) top-down components on the botton-up reflexive component of gaze-mediated orienting of attention. The study presented in Publication III aims to examine the subjective engagement and attribution of human likeness towards the robot depending on established eye contact or not during a joint attention task. Subjective reports show that eye contact increases human likeness attribution and feelings of engagement with the robot compared to a no-eye contact condition. The aim of the study presented in Publication IV is to investigate whether eye contact established by a humanoid robot affects objective measures of engagement (i.e. joint attention and fixation durations), and subjective feelings of engagement with the robot during a joint attention task. Results show that eye contact modulates attentional engagement, with longer fixations at the robot’s face and cueing effect when the robot establishes eye contact. In contrast, subjective reports show that the feeling of being engaged with the robot in an HRI protocol is not modulated by real-time eye contact. This study further supports the necessity for adding objective methods to HRI. Overall, this PhD work shows that embodied artificial agents can advance the theoretical knowledge of social cognitive mechanisms by serving as sophisticated interactive stimuli of high ecological validity and excellent experimental control. Moreover, humanoid-based protocols grounded in cognitive science can advance the HRI community by informing about the exact cognitive mechanisms that are present during HRI

    Autonomous, Context-Sensitive, Task Management Systems and Decision Support Tools I: Human-Autonomy Teaming Fundamentals and State of the Art

    Get PDF
    Recent advances in artificial intelligence, machine learning, data mining and extraction, and especially in sensor technology have resulted in the availability of a vast amount of digital data and information and the development of advanced automated reasoners. This creates the opportunity for the development of a robust dynamic task manager and decision support tool that is context sensitive and integrates information from a wide array of on-board and off aircraft sourcesa tool that monitors systems and the overall flight situation, anticipates information needs, prioritizes tasks appropriately, keeps pilots well informed, and is nimble and able to adapt to changing circumstances. This is the first of two companion reports exploring issues associated with autonomous, context-sensitive, task management and decision support tools. In the first report, we explore fundamental issues associated with the development of an integrated, dynamic, flight information and automation management system. We discuss human factors issues pertaining to information automation and review the current state of the art of pilot information management and decision support tools. We also explore how effective human-human team behavior and expectations could be extended to teams involving humans and automation or autonomous systems
    • …
    corecore