7 research outputs found

    Lightweight novel trust based framework for IoT enabled wireless network communications

    Get PDF
    For IoT enabled networks, the security and privacy is one of the important research challenge due to open nature of wireless communications, especially for the networks like Vehicular Ad hoc Networks (VANETs). The characteristics like heterogeneity, constrained resources, scalability requirements, uncontrolled environment etc. makes the problems of security and privacy even more challenging. Additionally, the high degree of availability needs of IoT networks may compromise the integrity and confidentially of communication data. The security threats mainly performed during the operations of data routing, hence designing the secure routing protocol main research challenge for IoT networks. In this paper, to design the lightweight security algorithm the use of Named Data Networking (NDN) which provides the benefits applicable for IoT applications like built-in data provenance assurance, stateful forwarding etc. Therefore the novel security framework NDN based Cross-layer Attack Resistant Protocol (NCARP) proposed in this paper. In NCARP, we designed the cross-layer security technique to identify the malicious attackers in network to overcome the problems like routing overhead of cryptography and trust based techniques. The parameters from the physical layer, Median Access Control (MAC) layer, and routing/network layer used to compute and averages the trust score of each highly mobility nodes while detecting the attackers and establishing the communication links. The simulation results of NCARP is measured and compared in terms of precision, recall, throughput, packets dropped, and overhead rate with state-of-art solutions

    Estudi bibliomètric segon trimestre 2014. EETAC

    Get PDF
    El present document recull les publicacions indexades a la base de dades Scopus durant el període comprès entre el mesos de maig a setembre de l’any 2014, escrits per autors pertanyents a l’EETAC. Es presenten les dades recollides segons la font on s’ha publicat, els autors que han publicat, i el tipus de document publicat. S’hi inclou un annex amb la llista de totes les referències bibliogràfiques publicades.Postprint (published version

    Estudi bibliomètric any 2014. Campus del Baix Llobregat: EETAC i ESAB

    Get PDF
    En el present informe s’analitza la producció científica de les dues escoles del Campus del Baix Llobregat, l’Escola d’Enginyeria de Telecomunicació i Aerospacial de Castelldefels (EETAC) i l’Escola Superior d’Agricultura de Barcelona (ESAB) durant el 2014.Postprint (author’s final draft

    Sensor Technologies for Intelligent Transportation Systems

    Get PDF
    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment

    Developing a body sensor network to detect emotions during driving

    No full text
    Emerging applications using body sensor networks (BSNs) constitute a new trend in car safety. However, the integration of heterogeneous body sensors with vehicular ad hoc networks (VANETs) poses a challenge, particularly on the detection of human behavioral states that may impair driving. This paper proposes a detector of human emotions, of which tiredness and stress (tension) could be related to traffic accidents. We present an exploratory study demonstrating the feasibility of detecting one emotional state in real time using a BSN. Based on these results, we propose middleware architecture that is able to detect emotions, which can be communicated via the onboard unit of a vehicle with city emergency services, VANETs, and roadside units, aimed at improving the driver's experience and at guaranteeing better security measures for the car driver

    Developing Driving Behaviour Models Incorporating the Effects of Stress

    Get PDF
    Driving is a complex task and several factors influence drivers’ decisions and performance including traffic conditions, attributes of vehicles, network and environmental characteristics, and last but not least characteristics of the drivers themselves. in an effort to better explain and represent driving behaviour, several driving behaviour models have been suggested over the years. In the existing literature, there are two main streams of driving behaviour models that can be found. The first is approaching driving behaviour from a human factors and cognitive perspective while the second is engineering-based. Driving behaviour models of the latter category are mathematical representations of drivers’ behaviour at the individual level, mostly focussing on acceleration/deceleration, lane-change and gap-acceptance decisions. Many of these factors are captured by existing driving behaviour models used in microscopic simulation tools. However, while the vast majority of existing models is approximating driving behaviour, primarily focusing on the effects of traffic conditions, little attention has been given to the impact of drivers’ characteristics. The aim of the current thesis is to investigate the effects of stress on driving behaviour and quantify its impact using an econometric modelling framework. This main research question emerged as a result of a widely acknowledged research gap in existing engineering-based driving behaviour models related to the incorporation of human factors and drivers’ characteristics within the model specification. The research was based on data collected using the University of Leeds Driving Simulator. Two main scenarios were presented to participants, while they were also deliberately subjected to stress induced by time pressure and various scenarios. At the same time, stress levels were measured via physiological indicators. Sociodemographic and trait data was also collected in the form of surveys. The data has been initially analysed for each main scenario and several statistics are extracted. The results show a clear effect of time pressure in favour of speeding, however relations related to physiological responses are not always clear. Moreover, two driving behaviour models are developed, a gap-acceptance and a car-following model. In the former model, increase in physiological responses is related to higher probability of accepting a gap and time pressure has a positive effect of gap-acceptance probability as well. In the car-following model, stress is associated with increased acceleration and potentially a more aggressive driving style. The aforementioned analysis is based on data collected in a driving simulator. Given the potential differences in driving behaviour between real and simulated driving, the transferability of a model based on the latter data to field traffic setting is also investigated. Results indicate significant differences in parameters estimated from a video and the simulator dataset, however these differences can be significantly reduced after applying parameter updating techniques. The findings in this thesis show that stress and drivers’ characteristics can influence driving behaviour and thus should be considered in the driving behaviour models for microscopic simulation applications. However, for real life applications, it is suggested that the extent of these effects should be treated with caution and ideally rescaled based on real traffic observations
    corecore