15,720 research outputs found
Smooth quasi-developable surfaces bounded by smooth curves
Computing a quasi-developable strip surface bounded by design curves finds
wide industrial applications. Existing methods compute discrete surfaces
composed of developable lines connecting sampling points on input curves which
are not adequate for generating smooth quasi-developable surfaces. We propose
the first method which is capable of exploring the full solution space of
continuous input curves to compute a smooth quasi-developable ruled surface
with as large developability as possible. The resulting surface is exactly
bounded by the input smooth curves and is guaranteed to have no
self-intersections. The main contribution is a variational approach to compute
a continuous mapping of parameters of input curves by minimizing a function
evaluating surface developability. Moreover, we also present an algorithm to
represent a resulting surface as a B-spline surface when input curves are
B-spline curves.Comment: 18 page
Infinitesimal isometries on developable surfaces and asymptotic theories for thin developable shells
We perform a detailed analysis of first order Sobolev-regular infinitesimal
isometries on developable surfaces without affine regions. We prove that given
enough regularity of the surface, any first order infinitesimal isometry can be
matched to an infinitesimal isometry of an arbitrarily high order. We discuss
the implications of this result for the elasticity of thin developable shells
Spontaneous curvature cancellation in forced thin sheets
In this paper we report numerically observed spontaneous vanishing of mean
curvature on a developable cone made by pushing a thin elastic sheet into a
circular container. We show that this feature is independent of thickness of
the sheet, the supporting radius and the amount of deflection. Several variants
of developable cone are studied to examine the necessary conditions that lead
to the vanishing of mean curvature. It is found that the presence of
appropriate amount of radial stress is necessary. The developable cone geometry
somehow produces the right amount of radial stress to induce just enough radial
curvature to cancel the conical azimuthal curvature. In addition, the circular
symmetry of supporting container edge plays an important role. With an
elliptical supporting edge, the radial curvature overcompensates the azimuthal
curvature near the minor axis and undercompensates near the major axis. Our
numerical finding is verified by a crude experiment using a reflective plastic
sheet. We expect this finding to have broad importance in describing the
general geometrical properties of forced crumpling of thin sheets.Comment: 13 pages, 12 figures, revtex
- …
