11,593 research outputs found

    On Orthogonal Band Allocation for Multi-User Multi-Band Cognitive Radio Networks: Stability Analysis

    Full text link
    In this work, we study the problem of band allocation of MsM_s buffered secondary users (SUs) to MpM_p primary bands licensed to (owned by) MpM_p buffered primary users (PUs). The bands are assigned to SUs in an orthogonal (one-to-one) fashion such that neither band sharing nor multi-band allocations are permitted. In order to study the stability region of the secondary network, the optimization problem used to obtain the stability region's envelope (closure) is established and is shown to be a linear program which can be solved efficiently and reliably. We compare our orthogonal allocation system with two typical low-complexity and intuitive band allocation systems. In one system, each cognitive user chooses a band randomly in each time slot with some assignment probability designed such that the system maintained stable, while in the other system fixed (deterministic) band assignment is adopted throughout the lifetime of the network. We derive the stability regions of these two systems. We prove mathematically, as well as through numerical results, the advantages of our proposed orthogonal system over the other two systems.Comment: Conditional Acceptance in IEEE Transactions on Communication

    Band Allocation for Cognitive Radios with Buffered Primary and Secondary Users

    Full text link
    In this paper, we study band allocation of Ms\mathcal{M}_s buffered secondary users (SUs) to Mp\mathcal{M}_p orthogonal primary licensed bands, where each primary band is assigned to one primary user (PU). Each SU is assigned to one of the available primary bands with a certain probability designed to satisfy some specified quality of service (QoS) requirements for the SUs. In the proposed system, only one SU is assigned to a particular band. The optimization problem used to obtain the stability region's envelope (closure) is shown to be a linear program. We compare the stability region of the proposed system with that of a system where each SU chooses a band randomly with some assignment probability. We also compare with a fixed (deterministic) assignment system, where only one SU is assigned to one of the primary bands all the time. We prove the advantage of the proposed system over the other systems.Comment: Accepted in WCNC 201
    • …
    corecore