26,337 research outputs found

    Conditional Task and Motion Planning through an Effort-based Approach

    Full text link
    This paper proposes a preliminary work on a Conditional Task and Motion Planning algorithm able to find a plan that minimizes robot efforts while solving assigned tasks. Unlike most of the existing approaches that replan a path only when it becomes unfeasible (e.g., no collision-free paths exist), the proposed algorithm takes into consideration a replanning procedure whenever an effort-saving is possible. The effort is here considered as the execution time, but it is extensible to the robot energy consumption. The computed plan is both conditional and dynamically adaptable to the unexpected environmental changes. Based on the theoretical analysis of the algorithm, authors expect their proposal to be complete and scalable. In progress experiments aim to prove this investigation

    Hierarchical Linearly-Solvable Markov Decision Problems

    Full text link
    We present a hierarchical reinforcement learning framework that formulates each task in the hierarchy as a special type of Markov decision process for which the Bellman equation is linear and has analytical solution. Problems of this type, called linearly-solvable MDPs (LMDPs) have interesting properties that can be exploited in a hierarchical setting, such as efficient learning of the optimal value function or task compositionality. The proposed hierarchical approach can also be seen as a novel alternative to solving LMDPs with large state spaces. We derive a hierarchical version of the so-called Z-learning algorithm that learns different tasks simultaneously and show empirically that it significantly outperforms the state-of-the-art learning methods in two classical hierarchical reinforcement learning domains: the taxi domain and an autonomous guided vehicle task.Comment: 11 pages, 6 figures, 26th International Conference on Automated Planning and Schedulin
    • …
    corecore