1,480 research outputs found

    Streaming Algorithms for Submodular Function Maximization

    Full text link
    We consider the problem of maximizing a nonnegative submodular set function f:2NR+f:2^{\mathcal{N}} \rightarrow \mathbb{R}^+ subject to a pp-matchoid constraint in the single-pass streaming setting. Previous work in this context has considered streaming algorithms for modular functions and monotone submodular functions. The main result is for submodular functions that are {\em non-monotone}. We describe deterministic and randomized algorithms that obtain a Ω(1p)\Omega(\frac{1}{p})-approximation using O(klogk)O(k \log k)-space, where kk is an upper bound on the cardinality of the desired set. The model assumes value oracle access to ff and membership oracles for the matroids defining the pp-matchoid constraint.Comment: 29 pages, 7 figures, extended abstract to appear in ICALP 201

    Budget-Feasible Mechanism Design for Non-Monotone Submodular Objectives: Offline and Online

    Get PDF
    The framework of budget-feasible mechanism design studies procurement auctions where the auctioneer (buyer) aims to maximize his valuation function subject to a hard budget constraint. We study the problem of designing truthful mechanisms that have good approximation guarantees and never pay the participating agents (sellers) more than the budget. We focus on the case of general (non-monotone) submodular valuation functions and derive the first truthful, budget-feasible and O(1)O(1)-approximate mechanisms that run in polynomial time in the value query model, for both offline and online auctions. Prior to our work, the only O(1)O(1)-approximation mechanism known for non-monotone submodular objectives required an exponential number of value queries. At the heart of our approach lies a novel greedy algorithm for non-monotone submodular maximization under a knapsack constraint. Our algorithm builds two candidate solutions simultaneously (to achieve a good approximation), yet ensures that agents cannot jump from one solution to the other (to implicitly enforce truthfulness). Ours is the first mechanism for the problem where---crucially---the agents are not ordered with respect to their marginal value per cost. This allows us to appropriately adapt these ideas to the online setting as well. To further illustrate the applicability of our approach, we also consider the case where additional feasibility constraints are present. We obtain O(p)O(p)-approximation mechanisms for both monotone and non-monotone submodular objectives, when the feasible solutions are independent sets of a pp-system. With the exception of additive valuation functions, no mechanisms were known for this setting prior to our work. Finally, we provide lower bounds suggesting that, when one cares about non-trivial approximation guarantees in polynomial time, our results are asymptotically best possible.Comment: Accepted to EC 201

    Precoder Design for Physical Layer Multicasting

    Full text link
    This paper studies the instantaneous rate maximization and the weighted sum delay minimization problems over a K-user multicast channel, where multiple antennas are available at the transmitter as well as at all the receivers. Motivated by the degree of freedom optimality and the simplicity offered by linear precoding schemes, we consider the design of linear precoders using the aforementioned two criteria. We first consider the scenario wherein the linear precoder can be any complex-valued matrix subject to rank and power constraints. We propose cyclic alternating ascent based precoder design algorithms and establish their convergence to respective stationary points. Simulation results reveal that our proposed algorithms considerably outperform known competing solutions. We then consider a scenario in which the linear precoder can be formed by selecting and concatenating precoders from a given finite codebook of precoding matrices, subject to rank and power constraints. We show that under this scenario, the instantaneous rate maximization problem is equivalent to a robust submodular maximization problem which is strongly NP hard. We propose a deterministic approximation algorithm and show that it yields a bicriteria approximation. For the weighted sum delay minimization problem we propose a simple deterministic greedy algorithm, which at each step entails approximately maximizing a submodular set function subject to multiple knapsack constraints, and establish its performance guarantee.Comment: 37 pages, 8 figures, submitted to IEEE Trans. Signal Pro

    Maximizing Symmetric Submodular Functions

    Full text link
    Symmetric submodular functions are an important family of submodular functions capturing many interesting cases including cut functions of graphs and hypergraphs. Maximization of such functions subject to various constraints receives little attention by current research, unlike similar minimization problems which have been widely studied. In this work, we identify a few submodular maximization problems for which one can get a better approximation for symmetric objectives than the state of the art approximation for general submodular functions. We first consider the problem of maximizing a non-negative symmetric submodular function f ⁣:2NR+f\colon 2^\mathcal{N} \to \mathbb{R}^+ subject to a down-monotone solvable polytope P[0,1]N\mathcal{P} \subseteq [0, 1]^\mathcal{N}. For this problem we describe an algorithm producing a fractional solution of value at least 0.432f(OPT)0.432 \cdot f(OPT), where OPTOPT is the optimal integral solution. Our second result considers the problem max{f(S):S=k}\max \{f(S) : |S| = k\} for a non-negative symmetric submodular function f ⁣:2NR+f\colon 2^\mathcal{N} \to \mathbb{R}^+. For this problem, we give an approximation ratio that depends on the value k/Nk / |\mathcal{N}| and is always at least 0.4320.432. Our method can also be applied to non-negative non-symmetric submodular functions, in which case it produces 1/eo(1)1/e - o(1) approximation, improving over the best known result for this problem. For unconstrained maximization of a non-negative symmetric submodular function we describe a deterministic linear-time 1/21/2-approximation algorithm. Finally, we give a [1(11/k)k1][1 - (1 - 1/k)^{k - 1}]-approximation algorithm for Submodular Welfare with kk players having identical non-negative submodular utility functions, and show that this is the best possible approximation ratio for the problem.Comment: 31 pages, an extended abstract appeared in ESA 201
    corecore