16,687 research outputs found

    Investigation into the selection of viewing configurations for three-component planar Doppler velocimetry measurements.

    Get PDF
    A method for the calculation of three orthogonal velocity components in planar Doppler velocimetry (PDV) using four or more measured velocity components (to the three typically used) is presented. The advantages and disadvantages are assessed by use of a Monte Carlo simulation and experimental measurements of the velocity field of a rotating disk. The addition of a fourth velocity component has been shown to lead to reductions in the final errors of up to 25%. The selection of viewing configurations for experiments is discussed by simulation of the level of errors in measured velocity components and investigation of the final level of errors in the orthogonal velocity components. Experimental measurements of the velocity field of a rotating disk are presented, demonstrating the effect of the viewing configuration on the final level of error

    Perturbed breakup of gas bubbles in water: Memory, gas flow, and coalescence

    Get PDF
    The pinch-off of an air bubble from an underwater nozzle ends in a singularity with a remarkable sensitivity to a variety of perturbations. I report on experiments that break both the axial (i.e., vertical) and azimuthal symmetry of the singularity formation. The density of the inner gas influences the axial asymmetry of the neck near pinch-off. For denser gases, flow through the neck late in collapse changes the pinch-off dynamics. Gas density is also implicated in the formation of satellite bubbles. The azimuthal shape oscillations described by Schmidt et al., can be initiated by anisotropic boundary conditions in the liquid as well as with an asymmetric nozzle shape. I measure the n = 3 oscillatory mode, and observe the nonlinear, highly three-dimensional outcomes of pinch-off with large azimuthal perturbations. These are consistent with prior theory

    Surface flow profiles for dry and wet granular materials by Particle Tracking Velocimetry; the effect of wall roughness

    Get PDF
    Two-dimensional Particle Tracking Velocimetry (PTV) is a promising technique to study the behaviour of granular flows. The aim is to experimentally determine the free surface width and position of the shear band from the velocity profile to validate simulations in a split-bottom shear cell geometry. The position and velocities of scattered tracer particles are tracked as they move with the bulk flow by analyzing images. We then use a new technique to extract the continuum velocity field, applying coarse-graining with the postprocessing toolbox MercuryCG on the discrete experimental PTV data. For intermediate filling heights, the dependence of the shear (or angular) velocity on the radial coordinate at the free surface is well fitted by an error function. From the error function, we get the width and the centre position of the shear band. We investigate the dependence of these shear band properties on filling height and rotation frequencies of the shear cell for dry glass beads for rough and smooth wall surfaces. For rough surfaces, the data agrees with the existing experimental results and theoretical scaling predictions. For smooth surfaces, particle-wall slippage is significant and the data deviates from the predictions. We further study the effect of cohesion on the shear band properties by using small amount of silicon oil and glycerol as interstitial liquids with the glass beads. While silicon oil does not lead to big changes, glycerol changes the shear band properties considerably. The shear band gets wider and is situated further inward with increasing liquid saturation, due to the correspondingly increasing trend of particles to stick together

    Homogeneity and isotropy in a laboratory turbulent flow

    Full text link
    We present a new design for a stirred tank that is forced by two parallel planar arrays of randomly actuated synthetic jets. This arrangement creates turbulence at high Reynolds number with low mean flow. Most importantly, it exhibits a region of 3D homogeneous isotropic turbulence that is significantly larger than the integral lengthscale. These features are essential for enabling laboratory measurements of turbulent suspensions. We use quantitative imaging to confirm isotropy at large, small, and intermediate scales by examining one-- and two--point statistics at the tank center. We then repeat these same measurements to confirm that the values measured at the tank center are constant over a large homogeneous region. In the direction normal to the symmetry plane, our measurements demonstrate that the homogeneous region extends for at least twice the integral length scale L=9.5L=9.5 cm. In the directions parallel to the symmetry plane, the region is at least four times the integral lengthscale, and the extent in this direction is limited only by the size of the tank. Within the homogeneous isotropic region, we measure a turbulent kinetic energy of 6.07×10−46.07 \times 10^{-4} m2^2s−2^{-2}, a dissipation rate of 4.65×10−54.65 \times 10^{-5} m2^2s−3^{-3}, and a Taylor--scale Reynolds number of Rλ=334R_\lambda=334. The tank's large homogeneous region, combined with its high Reynolds number and its very low mean flow, provides the best approximation of homogeneous isotropic turbulence realized in a laboratory flow to date. These characteristics make the stirred tank an optimal facility for studying the fundamental dynamics of turbulence and turbulent suspensions.Comment: 18 pages, 9 figure

    Computed Tomography of Chemiluminescence: A 3D Time Resolved Sensor for Turbulent Combustion

    No full text
    Time resolved 3D measurements of turbulent flames are required to further understanding of combustion and support advanced simulation techniques (LES). Computed Tomography of Chemiluminescence (CTC) allows a flame’s 3D chemiluminescence profile to be obtained by inverting a series of integral measurements. CTC provides the instantaneous 3D flame structure, and can also measure: excited species concentrations, equivalence ratio, heat release rate, and possibly strain rate. High resolutions require simultaneous measurements from many view points, and the cost of multiple sensors has traditionally limited spatial resolutions. However, recent improvements in commodity cameras makes a high resolution CTC sensor possible and is investigated in this work. Using realistic LES Phantoms (known fields), the CT algorithm (ART) is shown to produce low error reconstructions even from limited noisy datasets. Error from selfabsorption is also tested using LES Phantoms and a modification to ART that successfully corrects this error is presented. A proof-of-concept experiment using 48 non-simultaneous views is performed and successfully resolves a Matrix Burner flame to 0.01% of the domain width (D). ART is also extended to 3D (without stacking) to allow 3D camera locations and optical effects to be considered. An optical integral geometry (weighted double-cone) is presented that corrects for limited depth-of-field, and (even with poorly estimated camera parameters) reconstructs the Matrix Burner as well as the standard geometry. CTC is implemented using five PicSight P32M cameras and mirrors to provide 10 simultaneous views. Measurements of the Matrix Burner and a Turbulent Opposed Jet achieve exposure times as low as 62 μs, with even shorter exposures possible. With only 10 views the spatial resolution of the reconstructions is low. However, a cosine Phantom study shows that 20–40 viewing angles are necessary to achieve high resolutions (0.01– 0.04D). With 40 P32M cameras costing £40000, future CTC implementations can achieve high spatial and temporal resolutions
    • …
    corecore