148,195 research outputs found

    Determining Majority in Networks with Local Interactions and Very Small Local Memory

    Get PDF
    We study here the problem of determining the majority type in an arbitrary connected network, each vertex of which has initially two possible types (states). The vertices may have a few additional possible states and can interact in pairs only if they share an edge. Any (population) protocol is required to stabilize in the initial majority, i.e. its output function must interpret the local state of each vertex so that each vertex outputs the initial majority type. We first provide a protocol with 4 states per vertex that always computes the initial majority value, under any fair scheduler. Under the uniform probabilistic scheduler of pairwise interactions, we prove that our protocol stabilizes in expected polynomial time for any network and is quite fast on the clique. As we prove, this protocol is optimal, in the sense that there does not exist any population protocol that always computes majority with fewer than 4 states per vertex. However this does not rule out the existence of a protocol with 3 states per vertex that is correct with high probability (whp). To this end, we examine an elegant and very natural majority protocol with 3 states per vertex, introduced in [2] where its performance has been analyzed for the clique graph. In particular, it determines the correct initial majority type in the clique very fast and whp under the uniform probabilistic scheduler. We study the performance of this protocol in arbitrary networks. We prove that, when the two initial states are put uniformly at random on the vertices, the protocol of [2] converges to the initial majority with probability higher than the probability of converging to the initial minority. In contrast, we present an infinite family of graphs, on which the protocol of [2] can fail, i.e. it can converge to the initial minority type whp, even when the difference between the initial majority and the initial minority is n − Θ(ln n). We also present another infinite family of graphs in which the protocol of [2] takes an expected exponential time to converge. These two negative results build upon a very positive result concerning the robustness of the protocol of [2] on the clique, namely that if the initial minority is at most n7, the protocol fails with exponentially small probability. Surprisingly, the resistance of the clique to failure causes the failure in general graphs. Our techniques use new domination and coupling arguments for suitably defined processes whose dynamics capture the antagonism between the states involved

    Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization

    Get PDF
    We study the evolution of cooperation among selfish individuals in the stochastic strategy spatial prisoner's dilemma game. We equip players with the particle swarm optimization technique, and find that it may lead to highly cooperative states even if the temptations to defect are strong. The concept of particle swarm optimization was originally introduced within a simple model of social dynamics that can describe the formation of a swarm, i.e., analogous to a swarm of bees searching for a food source. Essentially, particle swarm optimization foresees changes in the velocity profile of each player, such that the best locations are targeted and eventually occupied. In our case, each player keeps track of the highest payoff attained within a local topological neighborhood and its individual highest payoff. Thus, players make use of their own memory that keeps score of the most profitable strategy in previous actions, as well as use of the knowledge gained by the swarm as a whole, to find the best available strategy for themselves and the society. Following extensive simulations of this setup, we find a significant increase in the level of cooperation for a wide range of parameters, and also a full resolution of the prisoner's dilemma. We also demonstrate extreme efficiency of the optimization algorithm when dealing with environments that strongly favor the proliferation of defection, which in turn suggests that swarming could be an important phenomenon by means of which cooperation can be sustained even under highly unfavorable conditions. We thus present an alternative way of understanding the evolution of cooperative behavior and its ubiquitous presence in nature, and we hope that this study will be inspirational for future efforts aimed in this direction.Comment: 12 pages, 4 figures; accepted for publication in PLoS ON

    Evolutionary stable strategies in networked games: the influence of topology

    Full text link
    Evolutionary game theory is used to model the evolution of competing strategies in a population of players. Evolutionary stability of a strategy is a dynamic equilibrium, in which any competing mutated strategy would be wiped out from a population. If a strategy is weak evolutionarily stable, the competing strategy may manage to survive within the network. Understanding the network-related factors that affect the evolutionary stability of a strategy would be critical in making accurate predictions about the behaviour of a strategy in a real-world strategic decision making environment. In this work, we evaluate the effect of network topology on the evolutionary stability of a strategy. We focus on two well-known strategies known as the Zero-determinant strategy and the Pavlov strategy. Zero-determinant strategies have been shown to be evolutionarily unstable in a well-mixed population of players. We identify that the Zero-determinant strategy may survive, and may even dominate in a population of players connected through a non-homogeneous network. We introduce the concept of `topological stability' to denote this phenomenon. We argue that not only the network topology, but also the evolutionary process applied and the initial distribution of strategies are critical in determining the evolutionary stability of strategies. Further, we observe that topological stability could affect other well-known strategies as well, such as the general cooperator strategy and the cooperator strategy. Our observations suggest that the variation of evolutionary stability due to topological stability of strategies may be more prevalent in the social context of strategic evolution, in comparison to the biological context

    An evolutionary game model for behavioral gambit of loyalists: Global awareness and risk-aversion

    Full text link
    We study the phase diagram of a minority game where three classes of agents are present. Two types of agents play a risk-loving game that we model by the standard Snowdrift Game. The behaviour of the third type of agents is coded by {\em indifference} w.r.t. the game at all: their dynamics is designed to account for risk-aversion as an innovative behavioral gambit. From this point of view, the choice of this solitary strategy is enhanced when innovation starts, while is depressed when it becomes the majority option. This implies that the payoff matrix of the game becomes dependent on the global awareness of the agents measured by the relevance of the population of the indifferent players. The resulting dynamics is non-trivial with different kinds of phase transition depending on a few model parameters. The phase diagram is studied on regular as well as complex networks

    Optimisation in ‘Self-modelling’ Complex Adaptive Systems

    No full text
    When a dynamical system with multiple point attractors is released from an arbitrary initial condition it will relax into a configuration that locally resolves the constraints or opposing forces between interdependent state variables. However, when there are many conflicting interdependencies between variables, finding a configuration that globally optimises these constraints by this method is unlikely, or may take many attempts. Here we show that a simple distributed mechanism can incrementally alter a dynamical system such that it finds lower energy configurations, more reliably and more quickly. Specifically, when Hebbian learning is applied to the connections of a simple dynamical system undergoing repeated relaxation, the system will develop an associative memory that amplifies a subset of its own attractor states. This modifies the dynamics of the system such that its ability to find configurations that minimise total system energy, and globally resolve conflicts between interdependent variables, is enhanced. Moreover, we show that the system is not merely ‘recalling’ low energy states that have been previously visited but ‘predicting’ their location by generalising over local attractor states that have already been visited. This ‘self-modelling’ framework, i.e. a system that augments its behaviour with an associative memory of its own attractors, helps us better-understand the conditions under which a simple locally-mediated mechanism of self-organisation can promote significantly enhanced global resolution of conflicts between the components of a complex adaptive system. We illustrate this process in random and modular network constraint problems equivalent to graph colouring and distributed task allocation problems

    The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein

    Get PDF
    The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N- or C-terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N-terminus portion of the knot and a rate-determining step where the C-terminus is incorporated. The low-lying minima with the N-terminus knotted and the C-terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N- and C-termini into the knot occur late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.Comment: 19 page
    corecore