565 research outputs found

    Imperfect Space Clamp Permits Electrotonic Interactions between Inhibitory and Excitatory Synaptic Conductances, Distorting Voltage Clamp Recordings

    Get PDF
    The voltage clamp technique is frequently used to examine the strength and composition of synaptic input to neurons. Even accounting for imperfect voltage control of the entire cell membrane (“space clamp”), it is often assumed that currents measured at the soma are a proportional indicator of the postsynaptic conductance. Here, using NEURON simulation software to model somatic recordings from morphologically realistic neurons, we show that excitatory conductances recorded in voltage clamp mode are distorted significantly by neighboring inhibitory conductances, even when the postsynaptic membrane potential starts at the reversal potential of the inhibitory conductance. Analogous effects are observed when inhibitory postsynaptic currents are recorded at the reversal potential of the excitatory conductance. Escape potentials in poorly clamped dendrites reduce the amplitude of excitatory or inhibitory postsynaptic currents recorded at the reversal potential of the other conductance. In addition, unclamped postsynaptic inhibitory conductances linearize the recorded current-voltage relationship of excitatory inputs comprising AMPAR and NMDAR-mediated components, leading to significant underestimation of the relative contribution by NMDARs, which are particularly sensitive to small perturbations in membrane potential. Voltage clamp accuracy varies substantially between neurons and dendritic arbors of different morphology; as expected, more reliable recordings are obtained from dendrites near the soma, but up to 80% of the synaptic signal on thin, distant dendrites may be lost when postsynaptic interactions are present. These limitations of the voltage clamp technique may explain how postsynaptic effects on synaptic transmission could, in some cases, be attributed incorrectly to presynaptic mechanisms

    Quantitative Analysis of Electrotonic Structure and Membrane Properties of NMDA-Activated Lamprey Spinal Neurons

    Get PDF
    Parameter optimization methods were used to quantitatively analyze frequency-domain-voltage-clamp data of NMDA-activated lamprey spinal neurons simultaneously over a wide range of membrane potentials. A neuronal cable model was used to explicitly take into account receptors located on the dendritic trees. The driving point membrane admittance was measured from the cell soma in response to a Fourier synthesized point voltage clamp stimulus. The data were fitted to an equivalent cable model consisting of a single lumped soma compartment coupled resistively to a series of equal dendritic compartments. The model contains voltage-dependent NMDA sensitive (INMDA), slow potassium (IK), and leakage (IL) currents. Both the passive cable properties and the voltage dependence of ion channel kinetics were estimated, including the electrotonic structure of the cell, the steady-state gating characteristics, and the time constants for particular voltage- and time-dependent ionic conductances. An alternate kinetic formulation was developed that consisted of steady-state values for the gating parameters and their time constants at half-activation values as well as slopes of these parameters at half-activation. This procedure allowed independent restrictions on the magnitude and slope of both the steady-state gating variable and its associated time constant. Quantitative estimates of the voltage-dependent membrane ion conductances and their kinetic parameters were used to solve the nonlinear equations describing dynamic responses. The model accurately predicts current clamp responses and is consistent with experimentally measured TTX-resistant NMDA-induced patterned activity. In summary, an analysis method is developed that provides a pragmatic approach to quantitatively describe a nonlinear neuronal system

    Regulation of neuronal excitability through pumilio-dependent control of a sodium channel gene

    Get PDF
    Dynamic changes in synaptic connectivity and strength, which occur during both embryonic development and learning, have the tendency to destabilize neural circuits. To overcome this, neurons have developed a diversity of homeostatic mechanisms to maintain firing within physiologically defined limits. In this study, we show that activity-dependent control of mRNA for a specific voltage-gated Na+ channel [encoded by paralytic (para)] contributes to the regulation of membrane excitability in Drosophila motoneurons. Quantification of para mRNA, by real-time reverse-transcription PCR, shows that levels are significantly decreased in CNSs in which synaptic excitation is elevated, whereas, conversely, they are significantly increased when synaptic vesicle release is blocked. Quantification of mRNA encoding the translational repressor pumilio (pum) reveals a reciprocal regulation to that seen for para. Pumilio is sufficient to influence para mRNA. Thus, para mRNA is significantly elevated in a loss-of-function allele of pum (pumbemused), whereas expression of a full-length pum transgene is sufficient to reduce para mRNA. In the absence of pum, increased synaptic excitation fails to reduce para mRNA, showing that Pum is also necessary for activity-dependent regulation of para mRNA. Analysis of voltage-gated Na+ current (INa) mediated by para in two identified motoneurons (termed aCC and RP2) reveals that removal of pum is sufficient to increase one of two separable INa components (persistent INa), whereas overexpression of a pum transgene is sufficient to suppress both components (transient and persistent). We show, through use of anemone toxin (ATX II), that alteration in persistent INa is sufficient to regulate membrane excitability in these two motoneurons

    EPSPs in rat neocortical neurons in vitro. II. Involvement of N-methyl-D-aspartate receptors in the generation of EPSPs

    Get PDF
    1. Intracellular recordings were obtained from neurons in layer II/III of rat frontal cortex. Single-electrode current- and voltage-clamp techniques were employed to compare the sensitivity of excitatory postsynaptic potentials (EPSPs) and iontophoretically evoked responses to N-methyl-D-aspartate (NMDA) to the selective NMDA antagonist D-2-amino-5-phosphonovaleric acid (D-2-APV). The voltage dependence of the amplitudes of the EPSPs before and after pharmacologic changes in the neuron's current-voltage relationship was also examined. 2. NMDA depolarized the membrane potential, increased the neuron's apparent input resistance (RN), and evoked bursts of action potentials. The NMDA-induced membrane current (INMDA) gradually increased with depolarization from -80 to -40 mV. The relationship between INMDA and membrane potential displayed a region of negative slope conductance in the potential range between -70 and -40 mV which was sufficient to explain the apparent increase in RN and the burst discharges during the NMDA-induced depolarization. 3. Short-latency EPSPs (eEPSPs) were evoked by low-intensity electrical stimulation of cortical layer IV. Changes in the eEPSP waveform following membrane depolarization and hyperpolarization resembled those of NMDA-mediated responses. However, the eEPSP was insensitive to D-2-APV applied at concentrations (up to 20 microM) that blocked NMDA responses. 4. EPSPs with latencies between 10 and 40 ms [late EPSPs (lEPSPs)] were evoked by electrical stimulation using intensities just subthreshold to the activation of IPSPs. The amplitude of the lEPSP increased with hyperpolarization and decreased with depolarization. 5. The lidocaine derivative QX-314, injected intracellularly, suppressed sodium-dependent action potentials and depolarizing inward rectification. Simultaneously, the amplitude of the eEPSP significantly decreased with depolarization. Neither the amplitude of a long-latency EPSP nor the amplitude of inhibitory postsynaptic potentials (IPSPs) was significantly affected by QX-314. 6. Cesium ions (0.5-2.0 mM) added to the bathing solution reduced or blocked hyperpolarizing inward rectification. Under these conditions, the amplitude of the eEPSP increased with hyperpolarization. The amplitude of the lEPSP was unaltered or enhanced. 7. The lEPSP was reversibly blocked by D-2-APV (5-20 microM), although the voltage-dependence of its amplitude did not resemble the action of NMDA on neocortical neurons

    Voltage sensitive Ca2+ conductances mediating modulatory effects of neuropeptides in rat spinal dorsal horn neurons

    Get PDF
    Voltage-activated Ca[superscript]2+ currents in immature rat spinal dorsal horn neurons and their modulation by substance P (SP) and calcitonin gene-related peptide (CGRP) have been investigated by using single-electrode voltage-clamp technique in the transverse spinal cord slice preparation;Using experimental conditions that minimized voltage-dependent Na[superscript]+ and K[superscript]+ currents, we distinguished low- and high-voltage-activated Ca[superscript]2+ currents on the basis of their voltage dependence and sensitivity to the Ca[superscript]2+ channel agonist and antagonist drugs. The low-voltage-activated (LVA) transient Ca[superscript]2+ current is evoked with weak depolarizing voltage commands at potentials positive to -70 mV and reaches the peak value between -40 and -30 mV. Inactivation is complete at potentials in the range of -60 to -50 mV. The transient component of the high-voltage-activated (HVA) Ca[superscript]2+ current activates at membrane potentials close to -40 mV and decays with time constants ranging from 100-600 ms. The sustained component of the HVA Ca[superscript]2+ current activates at potentials positive to -40 mV and exhibits little inactivation during 0.3-0.5s depolarizing commands. Bay K 8644 enhanced selectively the sustained component of the HVA Ca[superscript]2+ current, whereas nifedipine reduced this component of Ca[superscript]2+ current. Cd[superscript]2+ and Co[superscript]2+ ions markedly reduced both the transient and sustained components of the HVA Ca[superscript]2+ current. Nickel ions reduced the LVA transient Ca[superscript]2+ current;Bath application of CGRP elicited hyperpolarization in both small and large DRG neurons that was associated with an increase in membrane input resistance. However, some large DRG neurons were depolarized by CGRP. In addition, CGRP produced an increase in the amplitude and the duration of the Ca[superscript]2+ spike and increased the voltage-dependent Ca[superscript]2+ current by enhancing both the transient and the sustained components of high-threshold Ca[superscript]2+ current;CGRP depolarized about one-third of the dorsal horn neurons and increased their input resistance and excitability. CGRP increased the amplitude of the fast excitatory postsynaptic potentials recorded in dorsal horn neurons in response to electrical stimulation of a lumbar dorsal root. The increase in Ca[superscript]2+ current in DRG neurons is likely to be responsible for the facilitation of excitatory synaptic transmission;SP enhanced a low-threshold, transient Ca[superscript]2+ current in rat dorsal horn neurons. This effect may be responsible for the increase in excitability produced by SP

    Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells

    Get PDF
    Significant inroads have been made to understand cerebellar cortical processing but neural coding at the output stage of the cerebellum in the deep cerebellar nuclei (DCN) remains poorly understood. The DCN are unlikely to just present a relay nucleus because Purkinje cell inhibition has to be turned into an excitatory output signal, and DCN neurons exhibit complex intrinsic properties. In particular, DCN neurons exhibit a range of rebound spiking properties following hyperpolarizing current injection, raising the question how this could contribute to signal processing in behaving animals. Computer modeling presents an ideal tool to investigate how intrinsic voltage-gated conductances in DCN neurons could generate the heterogeneous firing behavior observed, and what input conditions could result in rebound responses. To enable such an investigation we built a compartmental DCN neuron model with a full dendritic morphology and appropriate active conductances. We generated a good match of our simulations with DCN current clamp data we recorded in acute slices, including the heterogeneity in the rebound responses. We then examined how inhibitory and excitatory synaptic input interacted with these intrinsic conductances to control DCN firing. We found that the output spiking of the model reflected the ongoing balance of excitatory and inhibitory input rates and that changing the level of inhibition performed an additive operation. Rebound firing following strong Purkinje cell input bursts was also possible, but only if the chloride reversal potential was more negative than −70 mV to allow de-inactivation of rebound currents. Fast rebound bursts due to T-type calcium current and slow rebounds due to persistent sodium current could be differentially regulated by synaptic input, and the pattern of these rebounds was further influenced by HCN current. Our findings suggest that active properties of DCN neurons could play a crucial role for signal processing in the cerebellum
    corecore