9,103 research outputs found

    Centralized Versus Decentralized Detection of Attacks in Stochastic Interconnected Systems

    Get PDF
    We consider a security problem for interconnected systems governed by linear, discrete, time-invariant, stochastic dynamics, where the objective is to detect exogenous attacks by processing the measurements at different locations. We consider two classes of detectors, namely centralized and decentralized detectors, which differ primarily in their knowledge of the system model. In particular, a decentralized detector has a model of the dynamics of the isolated subsystems, but is unaware of the interconnection signals that are exchanged among subsystems. Instead, a centralized detector has a model of the entire dynamical system. We characterize the performance of the two detectors and show that, depending on the system and attack parameters, each of the detectors can outperform the other. In particular, it may be possible for the decentralized detector to outperform its centralized counterpart, despite having less information about the system dynamics, and this surprising property is due to the nature of the considered attack detection problem. To complement our results on the detection of attacks, we propose and solve an optimization problem to design attacks that maximally degrade the system performance while maintaining a pre-specified degree of detectability. Finally, we validate our findings via numerical studies on an electric power system.Comment: Submitted to IEEE Transactions on Automatic Control (TAC

    Performance analysis of spectrum sensing techniques for cognitive radio

    Get PDF
    Spectrum sensing is a key element for cognitive radio and is process of obtaining awareness about the radio spectrum in order to detect the presence of other users. In this paper we study the performance of different spectrum sensing techniques in terms of detection performance and required SNR, based on theoretical expressions. Keywords- cognitive radio; spectrum sensing; energy detection; matced filter detection; cyclostationary feature detectio

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral
    • …
    corecore