115,586 research outputs found

    Begriffliche Situationsanalyse aus Videodaten bei unvollständiger und fehlerhafter Information

    Get PDF
    This work addresses the automatic detection of complex situations in image sequences in the video surveillance context. There are difficulties when dealing with data from natural environments. This work expands the formalism of FMTHL and SGTs to deal with erroneous, missing, and noisy data and complexity, demonstrates the robustness of situational recognition in natural scenarios, and expands generic applicability beyond discourse boundaries

    Robust Structure and Motion Recovery Based on Augmented Factorization

    Get PDF
    This paper proposes a new strategy to promote the robustness of structure from motion algorithm from uncalibrated video sequences. First, an augmented affine factorization algorithm is formulated to circumvent the difficulty in image registration with noise and outliers contaminated data. Then, an alternative weighted factorization scheme is designed to handle the missing data and measurement uncertainties in the tracking matrix. Finally, a robust strategy for structure and motion recovery is proposed to deal with outliers and large measurement noise. This paper makes the following main contributions: 1) An augmented factorization algorithm is proposed to circumvent the difficult image registration problem of previous affine factorization, and the approach is applicable to both rigid and nonrigid scenarios; 2) by employing the fact that image reprojection residuals are largely proportional to the error magnitude in the tracking data, a simple outliers detection approach is proposed; and 3) a robust factorization strategy is developed based on the distribution of the reprojection residuals. Furthermore, the proposed approach can be easily extended to nonrigid scenarios. Experiments using synthetic and real image data demonstrate the robustness and efficiency of the proposed approach over previous algorithms.22289016157335

    Detection of dirt impairments from archived film sequences : survey and evaluations

    Get PDF
    Film dirt is the most commonly encountered artifact in archive restoration applications. Since dirt usually appears as a temporally impulsive event, motion-compensated interframe processing is widely applied for its detection. However, motion-compensated prediction requires a high degree of complexity and can be unreliable when motion estimation fails. Consequently, many techniques using spatial or spatiotemporal filtering without motion were also been proposed as alternatives. A comprehensive survey and evaluation of existing methods is presented, in which both qualitative and quantitative performances are compared in terms of accuracy, robustness, and complexity. After analyzing these algorithms and identifying their limitations, we conclude with guidance in choosing from these algorithms and promising directions for future research

    Unsupervised learning of human motion

    Get PDF
    An unsupervised learning algorithm that can obtain a probabilistic model of an object composed of a collection of parts (a moving human body in our examples) automatically from unlabeled training data is presented. The training data include both useful "foreground" features as well as features that arise from irrelevant background clutter - the correspondence between parts and detected features is unknown. The joint probability density function of the parts is represented by a mixture of decomposable triangulated graphs which allow for fast detection. To learn the model structure as well as model parameters, an EM-like algorithm is developed where the labeling of the data (part assignments) is treated as hidden variables. The unsupervised learning technique is not limited to decomposable triangulated graphs. The efficiency and effectiveness of our algorithm is demonstrated by applying it to generate models of human motion automatically from unlabeled image sequences, and testing the learned models on a variety of sequences

    Segmentation-assisted detection of dirt impairments in archived film sequences

    Get PDF
    A novel segmentation-assisted method for film dirt detection is proposed. We exploit the fact that film dirt manifests in the spatial domain as a cluster of connected pixels whose intensity differs substantially from that of its neighborhood and we employ a segmentation-based approach to identify this type of structure. A key feature of our approach is the computation of a measure of confidence attached to detected dirt regions which can be utilized for performance fine tuning. Another important feature of our algorithm is the avoidance of the computational complexity associated with motion estimation. Our experimental framework benefits from the availability of manually derived as well as objective ground truth data obtained using infrared scanning. Our results demonstrate that the proposed method compares favorably with standard spatial, temporal and multistage median filtering approaches and provides efficient and robust detection for a wide variety of test material
    • …
    corecore