270 research outputs found

    Automated microaneurysm detection algorithms applied to diabetic retinopathy retinal images

    Get PDF
    Diabetic retinopathy is the commonest cause of blindness in working age people. It is characterised and graded by the development of retinal microaneurysms, haemorrhages and exudates. The damage caused by diabetic retinopathy can be prevented if it is treated in its early stages. Therefore, automated early detection can limit the severity of the disease, improve the follow-up management of diabetic patients and assist ophthalmologists in investigating and treating the disease more efficiently. This review focuses on microaneurysm detection as the earliest clinically localised characteristic of diabetic retinopathy, a frequently observed complication in both Type 1 and Type 2 diabetes. Algorithms used for microaneurysm detection from retinal images are reviewed. A number of features used to extract microaneurysm are summarised. Furthermore, a comparative analysis of reported methods used to automatically detect microaneurysms is presented and discussed. The performance of methods and their complexity are also discussed

    Computerized Approaches for Retinal Microaneurysm Detection

    Get PDF
    The number of diabetic patients throughout the world is increasing with a very high rate. The patients suffering from long term diabetes have a very high risk of generating retinal disorder called Diabetic Retinopathy(DR). The disease is a complication of diabetes and may results in irreversible blindness to the patient. Early diagnosis and routine checkups by expert ophthalmologist possibly prevent the vision loss. But the number of people to be screen exceeds the number of experts, especially in rural areas. Thus the computerized screening systems are needed which will accurately screen the large amount of population and identify healthy and diseased people. Thus the workload on experts is reduced significantly. Microaneurysms(MA) are first recognizable signs of DR. Thus early detection of DR requires accurate detection of Microaneurysms. Computerized diagnosis insures reliable and accurate detection of MA's. The paper overviews the approaches for computerized detection of retinal Microaneurysms

    Detection and removal of dust artifacts in retinal images via sparse-based inpainting

    Get PDF
    Dust particle artifacts are present in all imaging modalities but have more adverse consequences in medical images like retinal images. They could be mistaken as small lesions, such as microaneurysms. We propose a method for detecting and accurately segmenting dust artifacts in retinal images based on multi-scale template-matching on several input images and an iterative segmentation via an inpainting approach. The inpainting is done through dictionary learning and sparse-based representation. The artifact segmentation is refined by comparing the original image to the initial restoration. On average, 90% of the dust artifacts were detected in the test images, with state-of-theart restoration results. All detected artifacts were accurately segmented and removed. Even the most challenging artifacts located on top of blood vessels were removed. Thus, ensuring the continuity of the retinal structures. The proposed method successfully detects and removes dust artifacts in retinal images, which could be used to avoid false-positive lesion detections or as an image quality criterion. An implementation of the proposed algorithm can be accessed and executed through a Code Ocean compute capsule.The authors acknowledge the financial support from the Centre de Cooperació i Desenvolupament (CCD) at the Universitat Politècnica de Catalunya under project ref. CCD 2019-B004, and from the Universidad Tecnológica de Bolívar. Authors are grateful to Juan Luís Fuentes from the Miguel Servet University Hospital (Zaragoza, Spain) for providing the real images from clinical practice. E. Barrios thanks Minciencias and Sistema General de Regalías (Programa de Becas de Excelencia) for a PhD scholarship. E. Sierra thanks the Universidad Tecnológica de Bolívar for a post-graduate scholarship. Parts of this work were presented at the Pattern Recognition and Tracking XXX - SPIE DCS, 2019 [39]. L. Romero, A. Marrugo, and M.S. Millán thank the funds provided by the Spanish Ministerio de Ciencia e Innovación under the project reference PID2020-114582RB-I00.Peer ReviewedPostprint (published version

    Detection and removal of dust artifacts in retinal images via sparse-based inpainting

    Get PDF
    Dust particle artifacts are present in all imaging modalities but have more adverse consequences in medical images like retinal images. They could be mistaken as small lesions, such as microaneurysms. We propose a method for detecting and accurately segmenting dust artifacts in retinal images based on multi-scale template-matching on several input images and an iterative segmentation via an inpainting approach. The inpainting is done through dictionary learning and sparse-based representation. The artifact segmentation is refined by comparing the original image to the initial restoration. On average, 90% of the dust artifacts were detected in the test images, with state-of-theart restoration results. All detected artifacts were accurately segmented and removed. Even the most challenging artifacts located on top of blood vessels were removed. Thus, ensuring the continuity of the retinal structures. The proposed method successfully detects and removes dust artifacts in retinal images, which could be used to avoid false-positive lesion detections or as an image quality criterion. An implementation of the proposed algorithm can be accessed and executed through a Code Ocean compute capsul

    Retinal Image Analysis and its use in Medical Applications

    Get PDF
    Retina located in the back of the eye is not only a vital part of human sight, but also contains valuable information that can be used in biometric security applications, or for the diagnosis of certain diseases. In order to analyze this information from retinal images, its features of blood vessels, microaneurysms and the optic disc require extraction and detection respectively. We propose a method to extract vessels called MF-FDOG. MF-FDOG consists of using two filters, Matched Filter (MF) and the first-order derivative of Gaussian (FDOG). The vessel map is extracted by applying a threshold to the response of MF, which is adaptively adjusted by the mean response of FDOG. This method allows us to better distinguish vessel objects from non-vessel objects. Microaneurysm (MA) detection is accomplished with two proposed algorithms, Multi-scale Correlation Filtering (MSCF) and Dictionary Learning (DL) with Sparse Representation Classifier (SRC). MSCF is hierarchical in nature, consisting of two levels: coarse level microaneurysm candidate detection and fine level true microaneurysm detection. In the first level, all possible microaneurysm candidates are found while the second level extracts features from each candidate and compares them to a discrimination table for decision (MA or non-MA). In Dictionary Learning with Sparse Representation Classifier, MA and non-MA objects are extracted from images and used to learn two dictionaries, MA and non-MA. Sparse Representation Classifier is then applied to each MA candidate object detected beforehand, using the two dictionaries to determine class membership. The detection result is further improved by adding a class discrimination term into the Dictionary Learning model. This approach is known as Centralized Dictionary Learning (CDL) with Sparse Representation Classifier. The optic disc (OD) is an important anatomical feature in retinal images, and its detection is vital for developing automated screening programs. Currently, there is no algorithm designed to automatically detect the OD in fundus images captured from Asians, which are larger and have thicker vessels compared to Caucasians. We propose such a method to complement current algorithms using two steps: OD vessel candidate detection and OD vessel candidate matching. The proposed extraction/detection approaches are tested in medical applications, specifically the case study of detecting diabetic retinopathy (DR). DR is a complication of diabetes that damages the retina and can lead to blindness. There are four stages of DR and is a leading cause of sight loss in industrialized nations. Using MF-FDOG, blood vessels were extracted from DR images, while DR images fed into MSCF and Dictionary and Centralized Dictionary Learning with Sparse Representation Classifier produced good microaneurysm detection results. Using a new database consisting of only Asian DR patients, we successfully tested our OD detection method. As part of future work we intend to improve existing methods such as enhancing low contrast microaneurysms and better scale selection. In additional, we will extract other features from the retina, develop a generalized OD detection method, apply Dictionary Learning with Sparse Representation Classifier to vessel extraction, and use the new image database to carry out more experiments in medical applications

    Incorporating spatial information for microaneurysm detection in retinal images

    Get PDF
    The presence of microaneurysms(MAs) in retinal images is a pathognomonic sign of Diabetic Retinopathy (DR). This is one of the leading causes of blindness in the working population worldwide. This paper introduces a novel algorithm that combines information from spatial views of the retina for the purpose of MA detection. Most published research in the literature has addressed the problem of detecting MAs from single retinal images. This work proposes the incorporation of information from two spatial views during the detection process. The algorithm is evaluated using 160 images from 40 patients seen as part of a UK diabetic eye screening programme which contained 207 MAs. An improvement in performance compared to detection from an algorithm that relies on a single image is shown as an increase of 2% ROC score, hence demonstrating the potential of this method

    Microaneurysm detection using deep learning and interleaved freezing

    Get PDF
    Diabetes affects one in eleven adults. Diabetic retinopathy is a microvascular complication of diabetes and the leading cause of blindness in the working-age population. Microaneurysms are the earliest clinical signs of diabetic retinopathy. This paper proposes an automatic method for detecting microaneurysms in fundus photographies. A novel patch-based fully convolutional neural network for detection of microaneurysms is proposed. Compared to other methods that require five processing stages, it requires only two. Furthermore, a novel network fine-tuning scheme called Interleaved Freezing is presented. This procedure significantly reduces the amount of time needed to re-train a network and produces competitive results. The proposed method was evaluated using publicly available and widely used datasets: E-Ophtha and ROC. It outperforms the state-of-the-art methods in terms of free-response receiver operatic characteristic (FROC) metric. Simplicity, performance, efficiency and robustness of the proposed method demonstrates its suitability for diabetic retinopathy screening applications
    corecore