49,885 research outputs found

    Detection of interaction articles and experimental methods in biomedical literature

    Get PDF
    Background: This article describes the approaches taken by the OntoGene group at the University of Zurich in dealing with two tasks of the BioCreative III competition: classification of articles which contain curatable protein- protein interactions (PPI-ACT) and extraction of experimental methods (PPI-IMT). Results: Two main achievements are described in this paper: (a) a system for document classification which crucially relies on the results of an advanced pipeline of natural language processing tools; (b) a system which is capable of detecting all experimental methods mentioned in scientific literature, and listing them with a competitive ranking (AUC iP/R > 0.5). Conclusions: The results of the BioCreative III shared evaluation clearly demonstrate that significant progress has been achieved in the domain of biomedical text mining in the past few years. Our own contribution, together with the results of other participants, provides evidence that natural language processing techniques have become by now an integral part of advanced text mining approaches

    OntoGene in BioCreative II

    Full text link
    BACKGROUND: Research scientists and companies working in the domains of biomedicine and genomics are increasingly faced with the problem of efficiently locating, within the vast body of published scientific findings, the critical pieces of information that are needed to direct current and future research investment. RESULTS: In this report we describe approaches taken within the scope of the second BioCreative competition in order to solve two aspects of this problem: detection of novel protein interactions reported in scientific articles, and detection of the experimental method that was used to confirm the interaction. Our approach to the former problem is based on a high-recall protein annotation step, followed by two strict disambiguation steps. The remaining proteins are then combined according to a number of lexico-syntactic filters, which deliver high-precision results while maintaining reasonable recall. The detection of the experimental methods is tackled by a pattern matching approach, which has delivered the best results in the official BioCreative evaluation. CONCLUSION: Although the results of BioCreative clearly show that no tool is sufficiently reliable for fully automated annotations, a few of the proposed approaches (including our own) already perform at a competitive level. This makes them interesting either as standalone tools for preliminary document inspection, or as modules within an environment aimed at supporting the process of curation of biomedical literature

    A Linear Classifier Based on Entity Recognition Tools and a Statistical Approach to Method Extraction in the Protein-Protein Interaction Literature

    Get PDF
    We participated, in the Article Classification and the Interaction Method subtasks (ACT and IMT, respectively) of the Protein-Protein Interaction task of the BioCreative III Challenge. For the ACT, we pursued an extensive testing of available Named Entity Recognition and dictionary tools, and used the most promising ones to extend our Variable Trigonometric Threshold linear classifier. For the IMT, we experimented with a primarily statistical approach, as opposed to employing a deeper natural language processing strategy. Finally, we also studied the benefits of integrating the method extraction approach that we have used for the IMT into the ACT pipeline. For the ACT, our linear article classifier leads to a ranking and classification performance significantly higher than all the reported submissions. For the IMT, our results are comparable to those of other systems, which took very different approaches. For the ACT, we show that the use of named entity recognition tools leads to a substantial improvement in the ranking and classification of articles relevant to protein-protein interaction. Thus, we show that our substantially expanded linear classifier is a very competitive classifier in this domain. Moreover, this classifier produces interpretable surfaces that can be understood as "rules" for human understanding of the classification. In terms of the IMT task, in contrast to other participants, our approach focused on identifying sentences that are likely to bear evidence for the application of a PPI detection method, rather than on classifying a document as relevant to a method. As BioCreative III did not perform an evaluation of the evidence provided by the system, we have conducted a separate assessment; the evaluators agree that our tool is indeed effective in detecting relevant evidence for PPI detection methods.Comment: BMC Bioinformatics. In Pres

    Mining Images in Biomedical Publications: Detection and Analysis of Gel Diagrams

    Get PDF
    Authors of biomedical publications use gel images to report experimental results such as protein-protein interactions or protein expressions under different conditions. Gel images offer a concise way to communicate such findings, not all of which need to be explicitly discussed in the article text. This fact together with the abundance of gel images and their shared common patterns makes them prime candidates for automated image mining and parsing. We introduce an approach for the detection of gel images, and present a workflow to analyze them. We are able to detect gel segments and panels at high accuracy, and present preliminary results for the identification of gene names in these images. While we cannot provide a complete solution at this point, we present evidence that this kind of image mining is feasible.Comment: arXiv admin note: substantial text overlap with arXiv:1209.148

    A text-mining system for extracting metabolic reactions from full-text articles

    Get PDF
    Background: Increasingly biological text mining research is focusing on the extraction of complex relationships relevant to the construction and curation of biological networks and pathways. However, one important category of pathway—metabolic pathways—has been largely neglected. Here we present a relatively simple method for extracting metabolic reaction information from free text that scores different permutations of assigned entities (enzymes and metabolites) within a given sentence based on the presence and location of stemmed keywords. This method extends an approach that has proved effective in the context of the extraction of protein–protein interactions. Results: When evaluated on a set of manually-curated metabolic pathways using standard performance criteria, our method performs surprisingly well. Precision and recall rates are comparable to those previously achieved for the well-known protein-protein interaction extraction task. Conclusions: We conclude that automated metabolic pathway construction is more tractable than has often been assumed, and that (as in the case of protein–protein interaction extraction) relatively simple text-mining approaches can prove surprisingly effective. It is hoped that these results will provide an impetus to further research and act as a useful benchmark for judging the performance of more sophisticated methods that are yet to be developed

    Using Neural Networks for Relation Extraction from Biomedical Literature

    Full text link
    Using different sources of information to support automated extracting of relations between biomedical concepts contributes to the development of our understanding of biological systems. The primary comprehensive source of these relations is biomedical literature. Several relation extraction approaches have been proposed to identify relations between concepts in biomedical literature, namely, using neural networks algorithms. The use of multichannel architectures composed of multiple data representations, as in deep neural networks, is leading to state-of-the-art results. The right combination of data representations can eventually lead us to even higher evaluation scores in relation extraction tasks. Thus, biomedical ontologies play a fundamental role by providing semantic and ancestry information about an entity. The incorporation of biomedical ontologies has already been proved to enhance previous state-of-the-art results.Comment: Artificial Neural Networks book (Springer) - Chapter 1

    Classification of protein interaction sentences via gaussian processes

    Get PDF
    The increase in the availability of protein interaction studies in textual format coupled with the demand for easier access to the key results has lead to a need for text mining solutions. In the text processing pipeline, classification is a key step for extraction of small sections of relevant text. Consequently, for the task of locating protein-protein interaction sentences, we examine the use of a classifier which has rarely been applied to text, the Gaussian processes (GPs). GPs are a non-parametric probabilistic analogue to the more popular support vector machines (SVMs). We find that GPs outperform the SVM and na\"ive Bayes classifiers on binary sentence data, whilst showing equivalent performance on abstract and multiclass sentence corpora. In addition, the lack of the margin parameter, which requires costly tuning, along with the principled multiclass extensions enabled by the probabilistic framework make GPs an appealing alternative worth of further adoption

    Provenance-Centered Dataset of Drug-Drug Interactions

    Get PDF
    Over the years several studies have demonstrated the ability to identify potential drug-drug interactions via data mining from the literature (MEDLINE), electronic health records, public databases (Drugbank), etc. While each one of these approaches is properly statistically validated, they do not take into consideration the overlap between them as one of their decision making variables. In this paper we present LInked Drug-Drug Interactions (LIDDI), a public nanopublication-based RDF dataset with trusty URIs that encompasses some of the most cited prediction methods and sources to provide researchers a resource for leveraging the work of others into their prediction methods. As one of the main issues to overcome the usage of external resources is their mappings between drug names and identifiers used, we also provide the set of mappings we curated to be able to compare the multiple sources we aggregate in our dataset.Comment: In Proceedings of the 14th International Semantic Web Conference (ISWC) 201
    corecore