6,071 research outputs found

    System configuration, fault detection, location, isolation and restoration: a review on LVDC Microgrid protections

    Get PDF
    Low voltage direct current (LVDC) distribution has gained the significant interest of research due to the advancements in power conversion technologies. However, the use of converters has given rise to several technical issues regarding their protections and controls of such devices under faulty conditions. Post-fault behaviour of converter-fed LVDC system involves both active converter control and passive circuit transient of similar time scale, which makes the protection for LVDC distribution significantly different and more challenging than low voltage AC. These protection and operational issues have handicapped the practical applications of DC distribution. This paper presents state-of-the-art protection schemes developed for DC Microgrids. With a close look at practical limitations such as the dependency on modelling accuracy, requirement on communications and so forth, a comprehensive evaluation is carried out on those system approaches in terms of system configurations, fault detection, location, isolation and restoration

    A Review of Fault Diagnosing Methods in Power Transmission Systems

    Get PDF
    Transient stability is important in power systems. Disturbances like faults need to be segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the power transmission system is presented in this paper. Typically, voltage and current samples are deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented separately to convey a more logical and comprehensive understanding of the concepts. Feature extractions, transformations with dimensionality reduction methods are discussed. Fault classification and location techniques largely use artificial intelligence (AI) and signal processing methods. After the discussion of overall methods and concepts, advancements and future aspects are discussed. Generalized strengths and weaknesses of different AI and machine learning-based algorithms are assessed. A comparison of different fault detection, classification, and location methods is also presented considering features, inputs, complexity, system used and results. This paper may serve as a guideline for the researchers to understand different methods and techniques in this field

    Monitoring and Fault Location Sensor Network for Underground Distribution Lines

    Get PDF
    One of the fundamental tasks of electric distribution utilities is guaranteeing a continuous supply of electricity to their customers. The primary distribution network is a critical part of these facilities because a fault in it could affect thousands of customers. However, the complexity of this network has been increased with the irruption of distributed generation, typical in a Smart Grid and which has significantly complicated some of the analyses, making it impossible to apply traditional techniques. This problem is intensified in underground lines where access is limited. As a possible solution, this paper proposes to make a deployment of a distributed sensor network along the power lines. This network proposes taking advantage of its distributed character to support new approaches of these analyses. In this sense, this paper describes the aquiculture of the proposed network (adapted to the power grid) based on nodes that use power line communication and energy harvesting techniques. In this sense, it also describes the implementation of a real prototype that has been used in some experiments to validate this technological adaptation. Additionally, beyond a simple use for monitoring, this paper also proposes the use of this approach to solve two typical distribution system operator problems, such as: fault location and failure forecasting in power cables.Ministerio de Economía y Competitividad, Government of Spain project Sistema Inteligente Inalámbrico para Análisis y Monitorización de Líneas de Tensión Subterráneas en Smart Grids (SIIAM) TEC2013-40767-RMinisterio de Educación, Cultura y Deporte, Government of Spain, for the funding of the scholarship Formación de Profesorado Universitario 2016 (FPU 2016

    An Effective EMTR-Based High-Impedance Fault Location Method for Transmission Lines

    Full text link
    This paper summarizes the electromagnetic time reversal (EMTR) technique for fault location, and further numerically validates its effectiveness when the fault impedance is negligible. In addition, a specific EMTR model considering the fault impedance is derived, and the correctness of the model derivation is verified by various calculation methods. Based on this, we found that when the fault impedance is large, the existing EMTR methods might fail to accurately locate the fault. We propose an EMTR method that improves the location effect of high-impedance faults by injecting double-ended signals simultaneously. Theoretical calculations show that this method can achieve accurate location for high-impedance faults. To further illustrate the effectiveness, the proposed method is compared with the existing EMTR methods and the most commonly used traveling wave-based method using wavelet transform. The simulation results show that the proposed double-ended EMTR method can effectively locate high-impedance faults, and it is more robust against synchronization errors compared to the traveling wave method. In addition, the proposed method does not require the knowledge or the a priori guess of the unknown fault impedance

    International White Book on DER Protection : Review and Testing Procedures

    Get PDF
    This white book provides an insight into the issues surrounding the impact of increasing levels of DER on the generator and network protection and the resulting necessary improvements in protection testing practices. Particular focus is placed on ever increasing inverter-interfaced DER installations and the challenges of utility network integration. This white book should also serve as a starting point for specifying DER protection testing requirements and procedures. A comprehensive review of international DER protection practices, standards and recommendations is presented. This is accompanied by the identifi cation of the main performance challenges related to these protection schemes under varied network operational conditions and the nature of DER generator and interface technologies. Emphasis is placed on the importance of dynamic testing that can only be delivered through laboratory-based platforms such as real-time simulators, integrated substation automation infrastructure and fl exible, inverter-equipped testing microgrids. To this end, the combination of fl exible network operation and new DER technologies underlines the importance of utilising the laboratory testing facilities available within the DERlab Network of Excellence. This not only informs the shaping of new protection testing and network integration practices by end users but also enables the process of de-risking new DER protection technologies. In order to support the issues discussed in the white paper, a comparative case study between UK and German DER protection and scheme testing practices is presented. This also highlights the level of complexity associated with standardisation and approval mechanisms adopted by different countries

    An equivalent circuit for the evaluation of cross-country fault currents in medium voltage (MV) distribution networks

    Get PDF
    A Cross-Country Fault (CCF) is the simultaneous occurrence of a couple of Line-to-Ground Faults (LGFs), affecting different phases of same feeder or of two distinct ones, at different fault locations. CCFs are not uncommon in medium voltage (MV) public distribution networks operated with ungrounded or high-impedance neutral: despite the relatively small value of LGF current that is typical of such networks, CCF currents can be comparable to those that are found in Phase-To-Phase Faults, if the affected feeder(s) consists of cables. This occurs because the faulted cables' sheaths/screens provide a continuous, relatively low-impedance metallic return path to the fault currents. An accurate evaluation is in order, since the resulting current magnitudes can overheat sheaths/screens, endangering cable joints and other plastic sheaths. Such evaluation, however, requires the modeling of the whole MV network in the phase domain, simulating cable screens and their connections to the primary and secondary substation earth electrodes by suitable computer programs, such as ATP (which is the acronym for alternative transient program) or EMTP (the acronym for electromagnetic transient program), with substantial input data being involved. This paper presents a simplified yet accurate circuit model of the faulted MV network, taking into account the CCF currents' return path (cable sheaths/screens, ground conductors, and earthing resistances of secondary substations). The proposed CCF model can be implemented in a general-purpose simulation program, and it yields accurate fault currents estimates: for a 20 kV network case study, the comparison with accurate ATP simulations evidences mismatches mostly smaller than 2%, and never exceeding 5%
    corecore