13,385 research outputs found

    3-D Face Analysis and Identification Based on Statistical Shape Modelling

    Get PDF
    This paper presents an effective method of statistical shape representation for automatic face analysis and identification in 3-D. The method combines statistical shape modelling techniques and the non-rigid deformation matching scheme. This work is distinguished by three key contributions. The first is the introduction of a new 3-D shape registration method using hierarchical landmark detection and multilevel B-spline warping technique, which allows accurate dense correspondence search for statistical model construction. The second is the shape representation approach, based on Laplacian Eigenmap, which provides a nonlinear submanifold that links underlying structure of facial data. The third contribution is a hybrid method for matching the statistical model and test dataset which controls the levels of the model’s deformation at different matching stages and so increases chance of the successful matching. The proposed method is tested on the public database, BU-3DFE. Results indicate that it can achieve extremely high verification rates in a series of tests, thus providing real-world practicality

    Symmetry sensitivities of Derivative-of-Gaussian filters

    Get PDF
    We consider the measurement of image structure using linear filters, in particular derivative-of-Gaussian (DtG) filters, which are an important model of V1 simple cells and widely used in computer vision, and whether such measurements can determine local image symmetry. We show that even a single linear filter can be sensitive to a symmetry, in the sense that specific responses of the filter can rule it out. We state and prove a necessary and sufficient, readily computable, criterion for filter symmetry-sensitivity. We use it to show that the six filters in a second order DtG family have patterns of joint sensitivity which are distinct for 12 different classes of symmetry. This rich symmetry-sensitivity adds to the properties that make DtG filters well-suited for probing local image structure, and provides a set of landmark responses suitable to be the foundation of a nonarbitrary system of feature categories

    Disordered proteins and network disorder in network descriptions of protein structure, dynamics and function. Hypotheses and a comprehensive review

    Get PDF
    During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here we review the links between disordered proteins and the associated networks, and describe the consequences of local, mesoscopic and global network disorder on changes in protein structure and dynamics. We introduce a new classification of protein networks into ‘cumulus-type’, i.e., those similar to puffy (white) clouds, and ‘stratus-type’, i.e., those similar to flat, dense (dark) low-lying clouds, and relate these network types to protein disorder dynamics and to differences in energy transmission processes. In the first class, there is limited overlap between the modules, which implies higher rigidity of the individual units; there the conformational changes can be described by an ‘energy transfer’ mechanism. In the second class, the topology presents a compact structure with significant overlap between the modules; there the conformational changes can be described by ‘multi-trajectories’; that is, multiple highly populated pathways. We further propose that disordered protein regions evolved to help other protein segments reach ‘rarely visited’ but functionally-related states. We also show the role of disorder in ‘spatial games’ of amino acids; highlight the effects of intrinsically disordered proteins (IDPs) on cellular networks and list some possible studies linking protein disorder and protein structure networks
    • …
    corecore