14 research outputs found

    Detection of Anticipatory Brain Potentials during Car Driving

    Get PDF
    Recognition of driver’s intention from electroencephalogram (EEG) can be helpful in developing an in-car brain computer interface (BCI) systems for intelligent cars. This could be beneficial in enhancing the quality of interaction between the driver and the car to provide the response of the intelligent cars in line with driver’s intention. We proposed investigating anticipation as the cognitive state leading to specific actions during car driving. An experimental protocol is designed for recording EEG from 6 subjects while driving the virtual reality driving simulator. The experimental protocol is a variant of the contingent negative variation (CNV) paradigm with Go and No-go conditions in driving framework. The results presented in this study support the presence of the slow cortical anticipatory potentials in EEG grand averages and also confirm the discriminability of these potentials in offline single trial classification with the average of 0.76± 0.12 in area under the curve (AUC)

    Detecting Cognitive States for Enhancing Driving Experience

    Get PDF
    Intelligent cars exploit environmental information to support drivers by providing extra information and assisting complex maneouvers. They can also take into account the internal state of the driver by means of decoding cognition-related brain activity. Here we show the feasibility of successfully classify EEG correlates of anticipation, movement preparation and error processing while subjects drive in a realistic car simulator

    Anticipation- and Error-related EEG Signals during Realistic Human-Machine interaction: A Study on Visual and Tactile Feedback

    Get PDF
    The exploitation of EEG signatures of cognitive processes can provide valuable information to improve interaction with brain actuated devices. In this work we study these correlates in a realistic situation simulated in a virtual reality environment. We focus on cortical potentials linked to the anticipation of future events (i.e. the contingent negative variation, CNV) and error-related potentials elicited by both visual and tactile feedback. Experiments with 6 subjects show brain activity consistent with previous studies using simpler stimuli, both at the level of ERPs and single trial classification. Moreover, we observe comparable signals irrespective of whether the subject was required to perform motor actions. Altogether, these results support the possibility of using these signals for practical brain machine interaction

    Brain Correlates of Lane Changing Reaction Time in Simulated Driving

    Get PDF
    Psychophysical studies have reported correlation between neural activity in frontal and parietal areas and subject's reaction time in simple tasks. Here we study whether similar correlates can also be identified in driver's electroencephalography (EEG) activity when they perform steering actions triggered by exogenous stimuli (e.g. obstacles along the road). We report analysis of the EEG signals of fifteen subjects while they drive in a realistic car simulator. We found that the peak latency of the event-related potentials in frontal and parietal areas significantly correlates with the onset of the steering behavior. Similarly, modulations of the power in the theta band (4-8 Hz) prior to the action also correlates with the reaction times. These results provide evidence of reliable neural markers of the driver's response variability

    EEG correlates of active visual search during simulated driving: An exploratory study

    Get PDF
    Brain responses to visual stimuli can provide information about visual recognition processes. Several studies have shown stimulus-dependent modulation of the evoked neural responses after gaze shifts (i.e. eye fixation related potentials, EFRP) depending on the relevance of the fixated object. However these studies are typically performed on still images under constrained conditions. Here we extend this approach to study overt visual attention during a simulated driving task. Simultaneous analysis of eye-tracking and electroencephalography data revealed similar patterns than those previously reported. However, natural visual exploration yielded shorter fixations, which imposes constraints in the analysis of the elicited brain responses. Nevertheless, we found significant differences between EFRPs corresponding to target objects or non-object stimuli. These results suggest the possibility of decoding such information during driving, allowing better understanding of how drivers process the environmental information

    Making the most of context-awareness in brain-computer interfaces

    Get PDF
    In order for brain-computer interfaces (BCIs) to be used reliably for extended periods of time, they must be able to adapt to the users evolving needs. This adaptation should not only be a function of the environmental (external) context, but should also consider the internal context, such as cognitive states and brain signal reliability. In this work, we propose three different shared control frameworks that have been used for BCI applications: contextual fusion, contextual gating, and contextual regulation. We review recently published results in the light of these three context-awareness frameworks. Then, we discuss important issues to consider when designing a shared controller for BCI

    Single trial analysis of slow cortical potentials: A study on anticipation related potentials

    Get PDF
    Objective. Abundant literature suggests the use of Slow Cortical Potentials (SCPs) in a wide spectrum of basic and applied neuroscience areas. Due to low signal to noise ratio, often these potentials are studied using grand-average analysis, which conceal trial-to-trial information. Moreover, most of the single trial analysis methods in literature are based on classical- electroencephalogram (EEG) features ([1–30] Hz) and are likely to be unsuitable for SCPs that have different signal properties (such as signal’s spectral content in the range [0.2–0.7]Hz). In this paper we provide insights into the selection of appropriate parameters for spectral and spatial filtering. Approach. To this end, we study anticipation related SCPs recorded using a web-browser application protocol using full-band EEG (FbEEG) setup from 11 subjects on two different days. Main results. We first highlight the role of a bandpass with [0.1–1.0]sHz in comparison with common practices (e.g., either with full DC, just a lowpass, or with a minimal highpass cut-off around 0.05Hz). Second, we suggest that a combination of spatial-smoothing filter (SSF) and common average reference (CAR) is more suitable than the spatial filters often reported in literature (e.g., re-referencing to an electrode, Laplacian or CAR alone). Third, with the help of these preprocessing steps, we demonstrate the generalization capabilities of linear classifiers across several days (AUC of 0.88 ± 0.05 on average with a minimum of 0.81 ± 0.03 and a maximum of 0.97 ± 0.01). We also report the possibility of further improvement using a Bayesian fusion technique applied to electrode-specific classifiers. Significance. We believe the suggested spatial and spectral preprocessing methods are advantageous for grand-average and single trial analysis of SCPs obtained from EEG, MEG as well as for electrocorticogram (ECoG). The use of these methods will impact basic neurophysiological studies as well as the use of SCPs in the design of neuroprosthetics

    Electroencephalographic recording of the movement-related cortical potential in ecologically-valid movements:A scoping review

    Get PDF
    The movement-related cortical potential (MRCP) is a brain signal that can be recorded using surface electroencephalography (EEG) and represents the cortical processes involved in movement preparation. The MRCP has been widely researched in simple, single-joint movements, however, these movements often lack ecological validity. Ecological validity refers to the generalizability of the findings to real-world situations, such as neurological rehabilitation. This scoping review aimed to synthesize the research evidence investigating the MRCP in ecologically valid movement tasks. A search of six electronic databases identified 102 studies that investigated the MRCP during multi-joint movements; 59 of these studies investigated ecologically valid movement tasks and were included in the review. The included studies investigated 15 different movement tasks that were applicable to everyday situations, but these were largely carried out in healthy populations. The synthesized findings suggest that the recording and analysis of MRCP signals is possible in ecologically valid movements, however the characteristics of the signal appear to vary across different movement tasks (i.e., those with greater complexity, increased cognitive load, or a secondary motor task) and different populations (i.e., expert performers, people with Parkinson’s Disease, and older adults). The scarcity of research in clinical populations highlights the need for further research in people with neurological and age-related conditions to progress our understanding of the MRCPs characteristics and to determine its potential as a measure of neurological recovery and intervention efficacy. MRCP-based neuromodulatory interventions applied during ecologically valid movements were only represented in one study in this review as these have been largely delivered during simple joint movements. No studies were identified that used ecologically valid movements to control BCI-driven external devices; this may reflect the technical challenges associated with accurately classifying functional movements from MRCPs. Future research investigating MRCP-based interventions should use movement tasks that are functionally relevant to everyday situations. This will facilitate the application of this knowledge into the rehabilitation setting

    Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges

    Get PDF
    Intelligent vehicles and advanced driver assistance systems (ADAS) need to have proper awareness of the traffic context as well as the driver status since ADAS share the vehicle control authorities with the human driver. This study provides an overview of the ego-vehicle driver intention inference (DII), which mainly focus on the lane change intention on highways. First, a human intention mechanism is discussed in the beginning to gain an overall understanding of the driver intention. Next, the ego-vehicle driver intention is classified into different categories based on various criteria. A complete DII system can be separated into different modules, which consists of traffic context awareness, driver states monitoring, and the vehicle dynamic measurement module. The relationship between these modules and the corresponding impacts on the DII are analyzed. Then, the lane change intention inference (LCII) system is reviewed from the perspective of input signals, algorithms, and evaluation. Finally, future concerns and emerging trends in this area are highlighted

    Neurotechnologies for Human Cognitive Augmentation: Current State of the Art and Future Prospects

    Get PDF
    Recent advances in neuroscience have paved the way to innovative applications that cognitively augment and enhance humans in a variety of contexts. This paper aims at providing a snapshot of the current state of the art and a motivated forecast of the most likely developments in the next two decades. Firstly, we survey the main neuroscience technologies for both observing and influencing brain activity, which are necessary ingredients for human cognitive augmentation. We also compare and contrast such technologies, as their individual characteristics (e.g., spatio-temporal resolution, invasiveness, portability, energy requirements, and cost) influence their current and future role in human cognitive augmentation. Secondly, we chart the state of the art on neurotechnologies for human cognitive augmentation, keeping an eye both on the applications that already exist and those that are emerging or are likely to emerge in the next two decades. Particularly, we consider applications in the areas of communication, cognitive enhancement, memory, attention monitoring/enhancement, situation awareness and complex problem solving, and we look at what fraction of the population might benefit from such technologies and at the demands they impose in terms of user training. Thirdly, we briefly review the ethical issues associated with current neuroscience technologies. These are important because they may differentially influence both present and future research on (and adoption of) neurotechnologies for human cognitive augmentation: an inferior technology with no significant ethical issues may thrive while a superior technology causing widespread ethical concerns may end up being outlawed. Finally, based on the lessons learned in our analysis, using past trends and considering other related forecasts, we attempt to forecast the most likely future developments of neuroscience technology for human cognitive augmentation and provide informed recommendations for promising future research and exploitation avenues
    corecore