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Abstract—Intelligent vehicles and advanced driver assistance 

systems (ADAS) need to have proper awareness of the traffic 

context as well as the driver status since ADAS share the vehicle 

control authorities with the human driver. This study provides an 

overview of the ego-vehicle driver intention inference (DII), which 

mainly focus on the lane change intention on highways. First, a 

human intention mechanism is discussed in the beginning to gain 

an overall understanding of the driver intention. Next, the 

ego-vehicle driver intention is classified into different categories 

based on various criteria. A complete DII system can be separated 

into different modules, which consists of traffic context awareness, 

driver states monitoring, and the vehicle dynamic measurement 

module. The relationship between these modules and the 

corresponding impacts on the DII are analyzed. Then, the lane 

change intention inference (LCII) system is reviewed from the 

perspective of input signals, algorithms, and evaluation. Finally, 

future concerns and emerging trends in this area are highlighted. 

 
Index Terms—Intelligent vehicle, ADAS, lane change, driver 

intention, parallel driving. 
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I. INTRODUCTION 

ore than 80% of traffic accidents were caused by driver 

errors [1]-[3]. Until now, various passive safety systems 

like airbags and seat-belts have played a significant role 

in the protection of the driver and passengers. Although these 

techniques have saved millions of lives, they are not designed 

to prevent accidents from happening but to protect the 

passengers after the accidents [4] [5]. Instead of minimizing the 

injuries after the accidents, many efforts have been devoted to 

the development of safer and more intelligent systems such as 

the ADAS techniques so that the accidents can be prevent from 

happening. ADAS techniques like Adaptive Cruise Control 

(ACC), lane departure avoidance (LDA), lane keeping 

assistance (LKA), and side warning assistance (SWA) can 

assist the driver in making right decisions and reducing their 

workloads [6]-[8]. However, these systems usually make 

decisions without taking driver intended maneuver into 

consideration. A driver is in the center of the 

Traffic-Driver-Vehicle (TDV) loop, who makes decisions and 

interact with other road users by controlling the vehicle. Hence, 

understanding driver intention and behaviors are beneficial to 

driver safety, vehicle drivability, and traffic efficient.  

From the cognitive psychology perspective of view, 

intention refers to the thoughts that one has before the actions 

[9]. Accordingly, driver intention is the attitude towards 

performing a series of future vehicle control actions. Three 

aspects determine the human intention: the attitude towards the 

behavior, subjective norm and the perceived behavior control 

[10]. Bratman defined the intention as the main attitude that 

directly influences future actions [11]. Also, Heinze described a 

triple level architecture of the intentional behavior, which 

consists of intended level, activity level, and state level [12].  

Within the human-machine-interaction (HMI) scope [13], 

intention refers to the thoughts or attitudes towards an on-going 

action. Accordingly, intention recognition is the process of 

understanding whether the on-going activities of the agent are 

goal-oriented or not, and what is the goal behind these specific 

actions. Bonchek and Elisheva proposed a cognitive model 

with two core components, which were intention detection and 

intention prediction [14]. Intention detection is a process of 

analyzing whether a sequence of actions has underlying 

intention. Intention prediction, on the other hand, refers to the 
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prediction of the intentional goal based on a set of incomplete 

sequence of actions. The intention inference and reasoning 

make people intelligent and enable them to be effectively 

involved in interpersonal activities and communications. A 

human can recognize other’s intention based on their 

observation and the learned social knowledge. From the HMI 

perspective of view, only when a robot can recognize human 

intention based on their own observations can they be viewed 

as an intelligent agent [15]-[23]. Regarding the intelligent 

vehicles, it is still difficult to learn how to infer human intention 

accurately and collaborate with the driver efficiently since most 

of the most of current intelligent vehicles lack the ability of 

self-learning and knowledge summarizing by themselves. 

The reasons for developing the DII technique are multi-folds. 

One of the primary motivations is to improve driving safety. 

Inferring the driver intention can better assess the potential 

risks. Since a large amount of accidents are caused by human 

errors, misbehavior, cognitive and judgment errors [24]-[26], 

monitoring and correcting the driver intention in time are 

critical to the ADAS. Also, intention recognition enables the 

ADAS to avoid making conflict decisions with the driver [27]. 

As ADAS share the control authorities with the driver, it is 

essential for the ADAS to recognize the driver intention and not 

operate against the driver’s will. Driver intention inference 

enables the ADAS to assist the driver and focus on the 

corresponding traffic context perception as early as possible.  

Furthermore, intention inference system will contribute to 

the development of automated vehicles. DII system can be used 

to modeling the driver intention and generate human-like 

decision-making system. Concerning the level-three automated 

vehicles (SAE international standard, J3016), accurate driver 

intention prediction will contribute to a smoother and safer 

transition between the driver and the autonomous vehicle 

controller [28]-[30]. When level-three automated vehicle 

working in the automated driving mode, all the driving tasks are 

handled by the vehicle. However, once an emergent situation 

occurs, it must disengage and give the driving authority back to 

the driver. The vehicle can determine whether the driver is 

ready to take over or not by assessing their intention in advance.  

The contribution of this study can be summarized as follow. 

First, a state-of-art literature review for driver lane change 

intention is proposed. The LCII system is categorized based on 

different criteria. Second, the critical time flow of the DII with 

different driver behaviors is introduced. This leads to a 

comprehensive understanding of the architecture of intention 

inference system. Finally, future works and challenges of DII 

are proposed, and a parallel driver intention inference system is 

introduced.  

This paper is organized as follow. In Section Ⅱ, general 

human intention mechanisms and the classification methods for 

the DII systems are reviewed. In Section Ⅲ, the time-flow of 

the LCII system is introduced, and literature on LCII are 

reviewed from different perspective of views. In Section Ⅳ, 

future works and research are discussed. Finally, the paper is 

concluded in Section Ⅴ. 
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Fig.  1. Driver intention classification based on the time constant. 

II. DRIVER INTENTION CLASSIFICATION 

Driver intention can be classified into different categories 

based on different criteria. For example, it can be classified 

according to the motivation, time-scale, and the vehicle control 

direction. Among these, the two most straightforward 

classification ways are based on the time-scale of the intention 

and the driving directions. 

A. Time-Scale based Driver Intention Classification 

  Michon stated that the cognitive structure of human behavior 

in the traffic environment is a four-level hierarchical structure, 

which consists of road user, transportation consumer, social 

agent, and psycho-biological organism [31]. Among these, the 

road user level is directly related to the drivers and can be 

further divided into three sub-levels: strategical, tactical, and 

operational level (also known as control level), respectively, as 

shown in Fig. 1. The three cognitive levels can be viewed as 

three intentional levels based on time-scale characteristics. 

Strategy level defines the general plan of a trip such as the trip 

route, destination, and risk assessment, etc. The time constant is 

at least in minutes or even longer. At this moment, the driver 

considers transport mobility and comfortable issues, which is a 

long time-scale problem. Regarding the tactical level, the driver 

will make a short-term decision and control the vehicle to 

negotiate the prevailing circumstance. Tactical intentional 

maneuvers can consist of a series of operational maneuvers to 

finish the short-term tactical goals such as the turning, lane 

changing, and braking maneuvers [32]. 

 The control commands must meet the strategy that are 

defined in the strategical level. The control intention is the 

shortest maneuver among the three and stands for the will to 

remain safe and comfortable. The time constant of the control 

action is generally in milliseconds. Also, Salvucci et al. 

concluded that lane change was not merely a control procedure, 

but also incorporated a set of critical aspects of driving such as 

lower level controls [33]. For example, lane change maneuver 

can contain a series of short-term driving behaviors like the 

acceleration and deceleration in the longitudinal direction and 

the steering wheel control in the lateral direction. 
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Fig.  2.  Taxonomy of driver intention systems. 

 

A driver model, namely, Adaptive Control of 

Thought-Rational cognitive architecture was developed in [34]. 

Like the three-level architecture given by [31], the integrated 

driver model is divided into another three components, which 

are control, monitoring, and decision-making module. The 

control component is similar to the control level in [31], which 

is responsible for the perception of the external world and 

transfer the control signals to the vehicle. The monitoring 

component keeps aware of the surrounding situation and 

context by periodically perceiving and analyzing. The 

decision-making component, which has the same function with 

Michon’s tactical level, makes tactical decisions for each 

maneuver according to the awareness of the current situation 

and the information gathered from the control and monitoring 

module. One significant advantage of the cognitive driver 

model is the incorporation of the built-in features are useful for 

human ability imitation. A taxonomy of driver intention 

classification is depicted in Fig. 2 

B. Directional-based Driver Intention Classification 

The longitudinal and lateral motion are two basic directions 

for underground vehicles. Driver’s longitudinal behaviors 

contain braking, acceleration, starting, and lane keeping, etc. 

While the lateral intentions are normally more complicated 

than the longitudinal intention dues to the complex interaction 

with surrounding vehicles.  

Regarding the longitudinal intention, most of the previous 

studies focus on braking intention recognition [35]. Haufe et al. 

proposed a driver braking intention prediction using EEG 

(electroencephalograph) and EMG (electromyography) signals 

[36]. Similarly, Khaliliardali et al. proposed a driver intention 

prediction model to determine whether the driver will go ahead 

or stop based on the brain-computer-interface (BCI) technique 

[37]. McCall and Trivedi integrated the DII into an intelligent 

braking assistance system [38]. A sparse Bayesian learning 

algorithm was used to infer the driver’s braking intention. 

Trivedi et al. predicted the driver’s braking intention by 

directly monitoring the foot gesture through cameras [39] [40]. 

They showed that the driver foot gesture estimation plays a 

vital role in the vehicle longitudinal control and the usage of 

vision-based foot tracking is more straightforward and accurate. 

[41] [43] provided the braking intention estimation methods at 

intersections. Takahashi et al. predicted the deceleration intent 

during downhill road [42].  

In addition, tactical maneuvers usually consist of a series of 

sub-control maneuvers. Some of the existing studies focus on 

the analysis of multiple tactics rather than a single tactical task 

based on the utilization of machine learning methods. It was 

mentioned that discriminative machine learning models are 

more suitable for binary intention classification, while 

generative methods contribute to a higher intention detection 

accuracy for the multi-intention inference tasks [44]-[47]. 

III. DRIVER INTENTION INFERENCE METHODOLOGIES 

A. Architecture of Driver Intention Inference System  

DII system is an integration of multiple techniques such as 

perception, data fusion and synchronization, model learning 

and model inference. According to the existing studies, DII 

system mainly contains the following modules: traffic context 

perception module, vehicle dynamic module, driver behavior 

recognition module, and driver intention inference module. 

In Fig. 3, the traffic context information is captured by the 

environment perception block. This block captures the road and 

traffic context and outputs the position information of the 

ego-vehicle. By integrating the environment perception module 

with vehicle dynamic data through the CAN bus or the Ethernet, 

the relative distance, velocity, and future motion of the 

ego-vehicle and the surrounding vehicles can be obtained. The 

traffic and vehicle dynamic data will be fed into the inference 

module along with the driver behavior information. The driver 

behavioral information usually contains driver head rotation, 

eye gaze, and body movement, etc. Next, the intention 

inference model will calculate the probability of a lane change 

intention based on the integrated information. Like the human 

driver, the final output of the lane change decision module is a 

binary value which indicates a specific lane change decision. 

After the lane change decision is activated, the interaction 

module models the driver hand and foot dynamics as well as the 

dynamics of vehicle control interface. 
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Fig.  4. Relationship between tactical intention and control intention. 

 
TABLE 1 

COMMON INPUT SIGNALS AND SENSORS USED FOR DRIVER INTENTION 

INFERENCE.  

Sensor Sources Sensor Categories 

Traffic Current ego-vehicle position (collected with GPS and 

digital map), Relative distance, velocity and acceleration 
concerning the front and surrounding vehicles (collected 

with cameras, radar or Lidar). 

Vehicle  CAN bus signals (including steering wheel angle, steering 
wheel velocity, brake/gas pedal position, velocity, heading 

angle, etc.) 

Driver Cameras (Head rotation, gaze direction, foot dynamics). 

EEG, EMG, Heart rate, etc. 

 

The relationship between the tactical intention and the 

control intention concerning the driver-vehicle-interaction is 

explicitly illustrated in Fig. 4. Fig. 4 contains three parts namely 

the traffic context perception, tactical intention unit, and 

control units. Specifically, in the third level, three layers are 

defined. The upper layer is driver dynamics, which represent 

the checking and monitoring behavior of the driver. In this part, 

the most common dynamics are the brain dynamics that are 

measured by the EEG device, eye gaze behavior, head 

movement, and body movement (hand, body, and foot 

dynamics, etc.). The driver-vehicle-interaction layer will be 

activated once the lane change decision is made. Finally, 

vehicle control signals are fed into the lowest vehicle control 

layer.  

B. Inputs for Driver Intention Inference System  

The driver is in the center of the TDV loop. The signals from 

the TDV loop that used for driver intention inference can be 

classified into three categories. The standard inputs for the 

DLII system are summarized in Table 1. 

1) Traffic Context 

Traffic context is the primary stimuli to the driver intention. 

A better understanding of the surrounding traffic context will 

improve the intention inference accuracy. For instance, a lane 

change maneuver usually occurs when encountering a low 

speed front vehicle or a rear vehicle is approaching with fast 

speed. Different kinds of sensors can be used to capture the 

surrounding traffic context, such as the camera, radar, and 

Lidar systems [48]-[51]. Bernt et al. designed a Hidden Markov 

Model (HMM) based intention classifier which takes the 

distance to the next turn, the street curvature, and street type 

from the digital map as the algorithm inputs [52]. Rafael et al. 

predicted the lane change maneuvers on highways with 

GPS/IMU sensors to collect the vehicle position [53]. One of 

the advantages of the GPS is that it gives the location and time 

information in unfavorable weather conditions when the 

camera and radar system cannot work. In [54], McCall and 

Trivedi proposed a preliminary work that focuses on the lane 

change events. Radar and video devices are used to obtain the 

forward, rear, and side information. Meanwhile, cameras were 

also used to monitor the driver foot gesture and head movement. 

The work in [55] concentrated on the lane change intention 

prediction according to the sensory data, which contains the 

lane information given by a lane tracker, the vehicle velocity, 

lateral position and its derivation, and the steering wheel angle.  

2) Vehicle Dynamics  

Vehicle dynamic information such as steering wheel angle, 

brake pedal position, and velocity is the direct response to the 

control actions from the driver. Hence, these signals have been 

widely adopted for driver intention identification in the past. 

Vehicle data are usually collected from the CAN bus, which 

enables a large amount of data collection with high transfer 

speed [50] [52] [56]. Schmidt et al. proposed a lane change 

intention recognition method based on the construction of an 

explicit mathematical model of the steering wheel [57]. In [58] 

[59], driver lane change/keep intention inference systems were 

proposed on a driving simulator with the collection of vehicle 

dynamic information. In [60], an intention recognition method 

with artificial neural networks (ANN) was proposed. CAN bus 

data and driver gaze information was collected and fed into the 

ANN. However, since vehicle dynamic information is the 

response to the driving actions, they give delayed information 

compared with driver behavior data and traffic context 

information in the intention inference tasks. In general, vehicle 

dynamic information cannot provide advanced information for 

intention prediction. However, they still useful for the intention 

identification and can help to recognize the intent at an early 

stage after the intended maneuver has been initiated.  

3) Driver Behaviors  

Unlike the vehicle dynamic data, driver behavioral signals 

such as the head and eye movement give an early clue about the 

driver intention. Many studies have evaluated the impact of 

head/eye movement on the intention prediction [61]-[66]. 

Typically driver eye movement can be classified into 

intention-oriented and non-intention-oriented. Intention 

oriented eye movement means that the eye fixation or saccades 

is in purpose, while non-intention-based eye movement is cause 

by surrounding distractions. Driver visual fixation will no 
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longer follow the attention when the driver is distracted. In this 

case, eye movement can neither reflect driver mental purpose 

nor the predicted intention being trusted [63]. Regarding the 

intention-oriented eye tracking, it can be viewed as a cognitive 

progress of information gathering, which provides an early 

indication of driver mental states. Besides, the driver intention 

at the information gathering stage is less likely to change 

compared than that at the action execution stage [64].  

Although head/eye movement can be caused by distraction, 

most of the time, the driver will shift the eye gaze in purpose, 

which makes the eye movement an important signal for the 

intention decoding and inference [65]-[67]. It has been proved 

that the eye movement information improves the intention 

prediction accuracy and help to decrease the false alarm rate 

[68] [69]. A significant challenge to the eye information 

gathering is the eye tracking task. Dues to the physical 

characteristics of the eye (small scale and occlusion, etc.), it is 

not easy to detect the eye and track the pupil robustly. 

Moreover, the glass, lightness, and even hairs can influence eye 

tracking performance. According to these challenges, some 

robust algorithms for eye movement detection have been 

proposed [70]-[72]. Lethaus et al. [73] evaluated how early and 

how much data can be used to predict driver intention on a 

driving simulator. They concluded that a ten seconds window 

of the eye gaze data is large enough for intention prediction, 

and a five seconds window gives a better performance since 

less noise was carried.   

Similarly, head motion also reflects the cognitive process of 

information gathering. It was regarded as the most critical 

factor for intention prediction [68]. Head movement was 

widely adopted in DII systems [74] [78]. In [68], the authors 

claimed that both eye and head movement are useful data for 

the detection of driver distraction, attention, and mental state 

inference. However, head moves earlier than the eye when the 

driver is executing a goal-oriented task. On the other hand, 

when an outside stimulus occurs, and the driver is facing a 

non-goal-oriented task, she/he will shift her/his eye before 

rotating the head [68]. This is an interesting conclusion since it 

offers a way to determine whether the ongoing driver behavior 

is goal-oriented or stimuli-based. In [50], the authors evaluated 

the impact of LDW, ACC, SWA, and head tracking on 

intention detection. It was found that head tracking is most 

relevant to the intention recognition and the ACC and SWA 

systems have limited influence on the lane change intention 

prediction task. 

In addition to the eye gaze and head movement, some other 

behavioral signals like EEG, foot gesture, hand, and body 

gesture were also involved in literature [79]-[82]. EEG is an 

essential sensor for BCI design. EEG is sensitive to the small 

changes in the electrical activities, which is suitable to detect 

human mental state. Since EEG measures the brain activities, it 

can reflect the intention faster than the human muscle reaction. 

It was found that by using EEG, the braking intention can be 

detected 130 milliseconds faster than that only consider the 

brake pedal position [85] [86]. The drawbacks of EEG are the 

large signal noise, hard to acquire the signal, and getting weak 

if sampled with poor quality [83]. This is because brain electric 

current is under the brain layers, skull, and scalp and detected 

with the non-invasive method [84]. Despite the less robustness 

in the real-world application, EEG devices are widely accepted 

on the driving simulators and laboratory environment.  

C. Algorithms for Driver Intention Inference  

In [50], the proposed intelligent vehicle carries more than 

200 kinds of sensory signals from the LDW, ACC, SWA, and 

head tracking system. At this moment, machine learning 

algorithms are becoming the most suitable tool for data fusion 

and model construction. As discussed in [32], discriminative 

models lead to a better result on the single target detection than 

the generative models, while the generative models are more 

suitable for the multi-target problems. Despite these two typical 

methods, driver intention can also be modeled based on the 

cognitive models and the deep learning models. A taxonomy of 

the algorithms for intention inference is shown in Fig. 5. In 

Table 2, the comparison between different LCII systems are 

illustrated. In Table 2, signals and algorithm represent the 

model inputs and algorithms used to construct the inference 

model. The on-road environment means the data are collected 

in real-world while simulator means the experiment does not 

have naturalist on-road data and all the data are collected with a 

driving simulator. The number of subject measures how many 

subjects or how many data are involved in the experiment. The 

performance and prediction horizon are two different 

evaluation metrics that will be further discussed in the next part. 

1) Generative Model 

Generative models like HMM are widely used in existing 

LCII studies [52] [57]-[62] [87] [88]. In [69], the authors used 

three different algorithms, which were ANN, Bayesian network 

(BN), and Naive Bayesian. In [89], a new feature named 

comprehensive decision index (CDI) was introduced. Fuzzy 

logic was applied to represent the surrounding environment and 

driver lane change willingness. Li. et al. proposed an integrated 

intention inference algorithm based on HMM and Bayesian 

Filtering (BF) technique [90]. A preliminary output from the 

HMM was further filtered using the BF method to make the 

final decision. The HMM-BF framework achieved 93.5% and 

90.3% recognition accuracy for the right and left lane change, 

respectively. In [58], the authors proposed a driver lane 

change/keep intention inference method based on a dynamic 

Bayesian network (DBN). A four-step framework for the DII 

was developed, and the auto-regression (AR) was combined 

with the HMM to take the previous driver behaviors into 

consideration.  

In [91], the classification performance did not show a 

significant increase with additional traffic context information. 

However, the authors showed that the additional context 

information leads to a high false positive and the system 

performance was worse than the system with vehicle state 

information only. One possible explanation is that the HMM 

has limited ability to capture the context information during the 

lane change process. Therefore, a more powerful algorithm 

such as double layered HMM and input-output HMM should be 

used [98]. In [92], a lane change detection method based on the 

object-oriented BN was proposed. The system was designed 

according to the modularity and reusability of the BN, which 

makes the system easier to be extended according to different 

requirements.  
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Fig.  5. Taxonomy of intention inference algorithms 

TABLE 2 

SUMMARIZE OF VARIOUS PREVIOUS LANE CHANGE INTENTION INFERENCE SYSTEMS 

Paper Signals Algorithm No. Subjects Environment Performance Predict Horizon 

[59] 
Steering angle, steering 

force, velocity 
CHMM 10 Simulator 100% 

0.5-0.7s after 
steering 

[68] 
Lane position, CAN bus, 

Eye and Head 
RVM 8 On-road 88.51% 

3s before the lane 

change 

[103] Lane, CAN, and Head Sparse Bayesian Learning 3 On-road 90% 3s before maneuver 

[67] Eye movement Finish Questionnaire 17 Simulator 77% ─ 

[104] Eye movement  SVM 24 Samples On-road 73.13%±1.25% ─ 

[52] CAN, Digital map HMM 50 LCL, 50 LCR On-road 71%L, 74%R ─ 

[91] CAN, Distance  HMM 20 On-road 80%-90% ─ 

[51] CAN, LDW, ACC, Head,  RVM 15 On-road 91% 1s prior to maneuver 

[44] CAN, Head, Eye HMM 70 On-road 12.5%LR,17.6LL 
1s prior the 

maneuver 

[41] 
CAN, Lane style and 
position, Head, Eye 

Relevance vector machine 108 Lane changes On-road 79.20% ─ 

[87] Steering angle Queuing network model 14 Simulator 
LCN 98.61% LCE 

91.67%, 
─ 

[105] CAN, Eye movement State Transition Diagram 
20 (8576 lane 

changes) 
Simulator 80% ─ 

[50] 
CAN, ACC, SWA, LDW, 

Head 
RVM 15 (500 samples) On-road 80% 

3s before the lane 

change 

[106] CAN, GPS, Eye Finish Questionnaire 22 On-road ─ ─ 

[55] 
Steering angle and relative 

lane position 

SVM and Bayesian 

Filtering 
2 (139 Samples) On-road 80% 

1.3s before the lane 

change 

[60] CAN, Eye ANN 10 Simulator 95%(L), 85%(R) ─ 

[107] 
CAN, Lidar, Radar, Hand, 

Head, Foot 

Latent Dynamic 
Conditional Random Field 

(LDCRF) 

1000 samples On-road 90% 
2s prior the lane 

change 

[108] CAN 
SVM and Bayesian 

Network 
4 Simulator 

95%(LK), 
80%(LC) 

─ 

[34] CAN, eye movement 
Computational model 

based on ACT-R 
11 Simulator 90% 1s after steering 

[90] CAN bus 
CHMM and Bayesian 

Filtering 

188LCL, 

212LCR, 242 LK 
On-road 

93.5%(L), 

90.3%(R) 

0.5-0.7s after 

steering 

[98] 
GPS, digital map, head, 

CAN bus 
LSTM-RNN 

Ten drivers, 1180 

miles 
On-road 90.5% 

3.5s prior the lane 

change 

 

2) Discriminative Model 

Discriminative models such as SVM and ANN are widely 

used in the past dues to the rich background theories and the 

successful application experiences [50]-[55], [88]-[94]. In [50] 

[51], a Bayesian extension to the support vector machine 

algorithm, namely, the relevance vector machine (RVM) was 

used to classify the driver lane change (right and left), and lane 

keeping intention. The classifier achieved 80% accuracy with a 

relatively low false alarm rate. The authors in [60] proposed a 

driver intention recognition method based on artificial neural 

networks. The detection accuracy for left lane change achieved 

better detection accuracy than the right lane change. The results 

indicated that the head rotation had consistent gains between 

1.5s to 2.5s before the lane change maneuver. In [55], a 

multiclass classifier was constructed by combining the SVM 

and BF. Results showed that the proposed algorithm can realize 

an average of 1.3s prediction in advance and can achieve a 
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maximum prediction horizon of 3.29s. It was concluded that 

one of the crucial tasks for intention inference is to improve the 

performance of the lane tracking system and reduce the false 

alarm rate. 

3) Deep Learning Methods 

Recently, tremendous achievements have been made in the 

deep learning area dues to the development of deep learning 

theories, parallel computation hardware, and large-scale 

annotated datasets, etc. The deep Convolutional Neural 

Networks (CNN) have achieved state-of-art performance on 

many computer vision tasks, such as the image classification, 

segmentation, and object detection domains [95] [97]. 

Meanwhile, the Recurrent Neural Network (RNN) has achieved 

significant performance on time-series problems such as 

natural language processing and image captioning [75] [98]. 

RNN can be used to process the temporal dependence between 

the dataset as it allows the weighted connection between 

previous hidden-layers and the current layer. A long short-term 

memory (LSTM) scheme was proposed to increase the 

long-term dependency property and overcome the gradient 

descent [99]. As aforementioned, DII usually need to take 

previous driver behaviors and traffic context into consideration. 

The conventional HMM method has limited ability to capture 

long-term dependency. While the RNN can provide a better 

prediction of the driver intention. In [100], an LSTM-RNN 

model was developed to infer the driver intention when the 

vehicle enters an interaction. The RNN outperforms the 

quadratic discriminate analysis model. Similar, a series of 

studies have been proposed in [98]. The authors compared the 

LCII performance of the LSTM-based RNN with multiple 

HMMs. The lane change intent can be detected 3.5 seconds 

earlier before the vehicle come into another lane. The 

LSTM-RNN achieved one of the state-of-art results with the 

precision and recall of 90.5% and 87.4%. 

4) Cognitive Model 

Despite the machine learning algorithms, human cognitive 

models were also adopted in the past. Salvucci et al. introduced 

a real-time LCII system based on mind tracking architecture 

[33] [34]. The mind tracking computational model 

continuously infers the driver’s unobserved intention from the 

observed actions, which was built based on the Adaptive 

Control of Thought-Rational (ACT-R) framework. The system 

achieved 85% accuracy and 4% false alarm rate for the lane 

change intention detection. In [87], the authors constructed a 

queuing network cognitive architecture to model driver 

behavior during normal and emergency lane change. The 

differences between the outputs of the model and the measured 

data were compared. The proposed method achieved a high 

accuracy (above 90%) and low false alarm rate (29.4%). 

Comparing with the inference methods based on the eye gaze 

and head moment, this method can be easily extended into 

real-world application. However, since the algorithm was based 

on the steering wheel angle only, it cannot infer the driver 

intention before the maneuver happens or at a very early stage.  

D. Evaluation of Driver Intention Inference System 

Evaluating the performance of the DII system is essential and 

lead to a clear understanding of how the system works in the 

real world. DII system can be evaluated from two aspects, 

which are the detection accuracy and prediction horizon. 

 
Fig.  6. Illustration of a typical lane change progress with critical moments. 

 

1) Detection Accuracy 

In [94], To evaluate the classification performance, four 

evaluation criteria were introduced, which were the mean value 

of prediction horizon, the number of the correctly recognized 

lane change, the number of not recognizing the lane change, 

and the number of false alarms. Among these, the true positive 

rate (TPR) and false positive rate (FPR) are two critical factors 

to indicate the performance of the classifier. TPR measures 

how many times the classifier detects the intent successfully, 

while the FPR describes how many times the classifier 

miss-classify the intention into the wrong category. Sometimes, 

FPR is more critical than the TPR since the driver does not want 

to be disrupted by the assistance system frequently. If a 

classifier pursues a TPR at the price of high FPR, this system 

can be hardly accepted by the users. However, if a system has a 

slightly lower TPR and a lower FPR, it is still helpful in some 

situations. Therefore, the primary objective is to increase the 

TPR and decrease the FPR as much as possible [101].  

2) Prediction Horizon 

Prediction horizon is another critical factor. Some of the 

studies reported the TPR and FPR without giving a clear 

prediction horizon, which was unfair. As shown in Fig. 6, there 

are four critical moments for a lane change process. T1 

represents the moment when the driver generates the lane 

change intention. T2 is when the driver finishes traffic context 

checking and begin to change the lane. T3 represents the 

moment that the vehicle starts to cross the lane. Finally, the 

driver completes the lane change task at T4. Because there is no 

precise driver mental model can be used to explain when 

exactly the driver generates an intention, T1 is hard to be 

precisely determined. Hence, most of the studies use T2 and T3 

as the time criteria to evaluate the prediction horizon. The 

earlier the prediction is made, the more difficult the task will be. 

After the driver has taken some actions such as steering the 

wheel and accelerate/brake, it is straightforward to recognize 

their intent. However, if the intelligent vehicles try to recognize 

the driver’s intent before the actions are taken, the task will be 

much more difficult since only limited and uncertain 

information can be used. As shown in Table 2, some of the 

studies achieved 90% prediction accuracy with 2-3s prediction 

horizon [98] [103] [107]. It was reported that the lane change 

intention can be recognized with a high accuracy (100% and 

93.5%) in [59] [90]. However, these results are made after the 

lane change maneuver has been initiated. The earlier the 

prediction is made, the higher FPR will be. Therefore, a 

trade-off between the FPR and the prediction horizon exists, 

which need to be carefully evaluated [51]. It was found that the 

data collected 3s before the maneuver was enough to present 

the lane change intention. The prediction horizon in the 

simulation environment is usually better than that in real-world 

testing. This is mainly due to the large noise and distraction 
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exist in the real-world environment. However, the real-world 

results indicate a more natural performance, and benefit the 

analysis of driver mental-physical collaboration 

IV. CHALLENGES AND FUTURE WORKS 

In this section, challenges and part of the future works are 

highlighted. Four primary works to enhance the DII system are 

discussed, which are the design of next-generation ADAS, 

driver situation awareness and interaction aware modeling, 

autonomous driving, and parallel DII, respectively. 

A. Design Next-Generation ADAS  

Next-generation ADAS require further advances in driver 

understanding from outer behaviors, mental status, and 

sophisticated environment perception. As aforementioned, 

current ADAS are only equipped with isolated driver status 

recognition system, which fails to exploit the relationship 

between different functions. Meanwhile, a holistic traffic 

context perception system is required according to the fast 

development of sensors and an onboard computing device. 

These concerns give rise to the following discussion.  

1) Integration of Driver Monitoring Systems 

The studies of driver behavior-oriented assistance systems 

can be partially summarized into the following aspects, driver 

attention, driver intention, driver workload, driver style, and 

driver distraction, etc. For each research area, a vast amount of 

studies have been proposed. However, there are still no explicit 

connections between these systems. It is believed that driver 

behavior under the distracted condition, and the non-distracted 

state is different [109] [110]. Also, if the driver is overloaded 

after a long drive, the physical behaviors are also different 

[111]. In terms of the DII system, how to correctly infer driver 

intention with different mental status need to be studied. 

Therefore, the construction of a robust DII, which can adapt to 

different driver status is expected. Also, by considering driver 

monitoring systems has a whole, the control conflicts between 

the driver and the vehicle can be reduced.  

2) The Need for Comprehensive Environment Model. 

Sensing efficiently and precisely is another emerging 

requirement for the context perception module. A holistic 

approach is needed in the future to construct a comprehensive 

environment model from both sensors’ view as well as the 

drivers’ view. The driver-oriented context perception must 

process the context data sequence and analysis the potential 

driving solutions for the human driver. This can be treated as 

active guidance that can influence the driver intention 

generation process rather than only provide the fused context 

data to the driver and infer the intention afterward. Dynamic 

analysis of the potential driving behaviors concerning the 

current context will significantly increase the intention 

prediction horizon and accuracy. However, real-time 

estimation leads to a more stringent requirement to onboard 

perception and computing hardware. 

3) Design Cognitive Model for Driver Intention 

A more challenge work is to exploit a comprehensive 

understanding of the intention generation process according to 

the traffic context and human behaviors. Currently, driver 

attention and workload can be mathematically modeled, which 

provide a better explanation for the driver cognitive attention 

and workload behaviors [113] [114]. However, there are still 

limited studies on the explicit modeling of driver intention. 

Describing the intention generation process with more precise 

cognitive language and a mathematical model would be one of 

the core studies in the future. 

B. Situation Awareness and Interaction Aware 

The prediction of driver maneuver and the vehicle trajectory 

needs to be made according to the driver situation awareness 

and interaction behaviors. In [115], three kinds of vehicle 

motion modeling methods were proposed, which were the 

physics-based motion model, maneuver-based motion model, 

and interaction-aware motion model. The maneuver-based 

motion model predicts the vehicle trajectory based on the early 

recognition of the driver intended maneuvers, which is like the 

intention inference task described in this study. However, most 

of the maneuver-based models assume the surrounding vehicles 

move independently without interacting with each other, which 

can be unreasonable in some complicated situations such as in 

the roundabout or urban area. Therefore, the interaction-aware 

modeling methods with respect to the driver situation 

awareness should be further studied in the future. This part will 

discuss this problem from two points, which are driver situation 

awareness modeling and interaction-awareness modeling. 

1) Situation Awareness Modeling 

Driver situation awareness (SA) can be viewed as the 

knowledge that learned and updated from the driving tasks to 

handle the multifaced situation and guide the driver to make 

decisions when engaged in real-time multitasking [116]. The 

perceptual and cognitive process of maintaining the SA also 

can be divided into three categories, which are automatic 

(usually unconscious and require no cognitive resources), 

recognition-primed process (few demands on cognitive 

resources), and conscious controlled process which requires 

heavy cognitive resources [116]. Driver SA model carries the 

habit, knowledge, and attitude towards the specific driving 

tasks and closely related to the DII since the SA knowledge 

direct how to understand the driver correctly. For example, a 

driver intention-oriented situation awareness system at the 

intersection has been discussed in [27]. Four significant 

contributions of the situation awareness system are summarized 

as avoidance of unnecessary warnings, detection of occluded 

traffic participants, enhancement of driver intent inference, and 

helps to predict future trajectories of other entities.  

Regarding the lane change maneuvers, the four factors are 

also important since situation awareness model enables the 

analysis of surrounding traffic flow and provide guidance to the 

DII system. In [117], driver lane change maneuver was 

classified into five categories based on the different interaction 

style with surrounding vehicles. With the analysis of 1000 

naturalistic highway lane change data, it was found that 72% of 

the lane change was self-motivated and had no significant 

interaction with the surrounding vehicles. However, without 

the proper SA, drivers may be unable to finish the intended 

maneuver smoothly when encountering a complex interaction. 

For example, a low-speed vehicle is in front of the ego-lane and 

a rear vehicle is fast approaching in the overtaking lane. In this 

case, the driver may wish to overtake the front vehicle and must 

control the vehicle according to the SA and the motion 

prediction of the rear vehicle. If the driver may postpone his 
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lane change maneuver and let rear vehicle pass first, a conflict 

will be generated between the desired intention and the actual 

maneuver.   

Most of the driver intention studies in the past do not provide 

enough analysis of this conflict because the driver intention is 

unable to be predicted and labeled precisely, especially in such 

a complex condition. Further, as mentioned in [117], most of 

the naturalistic lane change maneuvers have no significant 

interaction with other vehicles. The complex interaction 

scenarios are hard to be repeated in the real world so that not 

enough data can be used to analyze the conflict situations. 

However, the situation assessment and understanding can be 

used to predict the dangerous maneuver at the intersections so 

that conflict between the actual intention and the expected 

intention can be clarified [118]. Specifically, the intended 

stop/go maneuver and the expected maneuver of the driver 

when approaching an intersection was compared to gain a risk 

assessment of the dangerous maneuver. In [119], the context 

information and the corresponding traffic rules were applied 

with the DBN so that the expected maneuver of the driver can 

be estimated. The future motion of the traffic participants is the 

combination of the tactical intentions and their corresponding 

risk assessment to perform the maneuver [120]. Therefore, it is 

believed that driver situation awareness and risk assessment 

can contribute to a better prediction of driver intention.  

In sum, traffic situation awareness concerning the 

assessment of the traffic contexts, traffic rules, road layout, and 

driver behaviors, etc. are critical to the correct prediction to the 

driver intention. A driver may generate a series of checking 

behaviors and perform the maneuver after the intention. 

However, the intended maneuver may be postponed or aborted 

dues to the inappropriate situation. Hence, a comprehensive 

situation awareness model is needed to fully understand the 

driver behavior, cognitive process, perception, and interaction 

habit so that a precise prediction of the driver intention can be 

achieved.  

2) Interaction-Aware Modeling  

The interaction-aware motion prediction assumed traffic 

entities influence each other and provide a longer-term motion 

prediction of other road users as the mutual dependencies 

between the drivers’ decisions are considered. Regarding the 

lane change maneuver, a suddenly cut-in maneuver in front of 

the ego-vehicle can cause a lane change decision to the 

ego-driver to avoid collision [121]. At this moment, the DII 

algorithms may become less powerful than with the 

interaction-aware algorithms in the prevention of collision as 

DII is mainly designed for the prediction of active intention. 

Here we roughly define the active intention as a goal-oriented 

intention while the passive intention is mainly caused by other 

road entities and the host driver must finish a specific maneuver 

in a short period. In [122], an integrated interaction-aware 

motion prediction model was proposed based on the 

combination of model-based intention estimation for 

surrounding entities and learning-based lateral motion 

prediction. The proposed method provides a reliable estimation 

of the future planning of the surrounding vehicles and the 

average prediction time before the lane change maneuvers can 

be extended by more than 60%.  

In [123], a unified framework for maneuver classification, 

trajectory prediction, and interaction-aware motion prediction 

was proposed. It was shown that the predicted surrounding 

vehicle motion should be determined according to the 

comprehensive analysis of the potential maneuver and the 

probability of the future trajectory. In [124], a generic 

probabilistic interactive situation aware model is proposed 

based on a two-layer HMM framework (TLHMM). The 

TLHMM modeled the real-world interaction behaviors in the 

highway entrance, roundabout, and T-intersections by 

computing the joint maneuver distribution of the multiple 

interactive agents. However, the model has a limitation in the 

long-term prediction since the TLHMM cannot precisely 

remember the long-term dependency and temporal patterns. 

With interaction-aware prediction model, the long-term motion 

and intention of surrounding entities can be estimated and used 

for host driver intention inference. This will lead to a holistic 

understanding of current traffic context and enhance the DII 

system with an even earlier prediction. Moreover, the 

interaction-aware motion prediction enables the inference of 

suddenly lane change intention (passive intention) as discussed 

in the cut-in scenario. However, one of the disadvantages of the 

interaction-aware model is the computational complexity 

grows exponentially with the increasing number of vehicles 

[122]. The interaction-aware method relies on a comprehensive 

perception of the local traffic context, which increases the 

overall system cost. 

Another interesting point is to predict the driver intention and 

interaction behaviors based on transfer learning. In [124], the 

second layer of the TLHMM was trained with virtual data and 

high-level meta-features instead of traffic context information, 

which can be quickly applied to the real-world target. The 

complex interaction behaviors and scenarios are hard to be 

recorded and duplicated in the real-world while it can be 

carefully designed and sufficiently tested in the simulation 

environment. Hence, if the knowledge learned from the 

simulation can be properly transferred into the real-world 

scenario, the real-world interaction-aware model can be more 

precise and robust. This is also a major concern of parallel 

driving and parallel driver, which will be discussed later. 

Despite sensing traffic context with onboard multi-sensor 

fusion, the interaction-aware prediction model can also be 

constructed based on the vehicle-to-vehicle (V2V) techniques 

[125]. The V2V communication does not rely on high-cost 

sensors but can provide efficient interactive communication 

and situation awareness for the local area vehicles. The 

intention inference for the host driver and surrounding drivers 

can be detected and shared even earlier with the V2V 

techniques. The impact of the interaction-aware motion 

prediction and the V2V technique to the host driver intention 

inference have not been adequately studied in the past. Future 

works are expected in this area so that a risk-free and highly 

interactive traffic framework can be built.  

C. Autonomous Driving 

The automated driving technology was divided into different 

levels based on the SAE standard J3016. With Level three or 

higher intelligence, the autonomous vehicle is responsible for 

the environment perception, decision making, motion planning, 

and vehicle control.  The automotive industry wishes to replace 

human drivers with autonomous cars so that human mistakes 
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can be avoided. However, it does not mean that driver modeling 

is not needed in the future. 

DII systems require a comprehensive understanding of the 

driving environment as well as the driver behavioral pattern. 

The process of intention generation and execution reflects the 

driver SA regarding the traffic context. Current 

decision-making algorithms for autonomous vehicles are 

mainly based on optimization, probabilistic models, and 

reinforcement learning. Neither of the algorithms takes the 

driver experience into the loop. The autonomous vehicle makes 

lane change mainly based on the pre-defined rule base or the 

probabilistic model like Markov chain. These algorithms 

usually fail to consider the acceptance of the human passenger. 

The DII system will provide important guidance to the 

autonomous vehicle so that the autonomous vehicle can learn 

how human drivers make lane change as well as when and 

where to execute the lane change. Meanwhile, combining DII 

with driving styles is also considerable [126]. Different drivers 

have different driving styles, and the intention inference system 

cannot work uniformly. For some situation, gentle drivers 

prefer to wait before changing the lane while aggressive driver 

likes the challenge tasks. If the autonomous vehicle takes the 

different intention pattern from different driver styles, the 

autonomous vehicle can minimize the uncomfortable driving 

experience for the passengers.  

Another emerging topic for DII towards autonomous 

decision making and motion planning is to estimate when and 

where the driver is going to drive [127]. Most of the existing 

driver intention inference algorithms do not pay attention to the 

intended position. The position should be estimated with the 

comprehensive environment perception and driver behaviors in 

the past few seconds. Current intention inference algorithms 

enable the intention prediction before the maneuver. However, 

the intended position estimation is still a difficult task. The 

positioning pattern learned from the driver can be transferred to 

the autonomous vehicle more straightforward. The path 

planning model can take the estimated short-term destination 

into calculation so that a more reasonable and human-like path 

can be generated. Therefore, transferring the DII knowledge to 

the autonomous vehicle will bring more naturalistic human-like 

behaviors in both decision-making and motion planning stage.  

D. Parallel Driver Intention Inference System 

As aforementioned, the driver intention inference system 

suffers from hardware and algorithm limitation. Also, there is 

still no explicit model to describe the real mental intention 

process. One of the emerging challenges is short of data for 

model training and model evaluation. It is hard to collect plenty 

of real-world data to increase the data diversity since it 

dramatically increases the temporal and financial cost. 

Therefore, a novel approach is required to sufficiently train and 

evaluate the intention inference system, and it would be better 

to have a self-learning ability to exploit the unseen pattern and 

principles that are behind the driver intention nature. Fei-Yue 

Wang first developed the parallel theory in 2004 [128]. The 

construction of a parallel system requires the ACP approach as 

the background knowledge, which is the combination of 

Artificial society, Computational experiments, and Parallel 

execution [129].  

 
Fig. 7. Architecture of ACP-based parallel driver intention inference system. 
 

The physical system in the real world can be viewed as a 

Newton machine, whereas the software defined-artificial world 

is a Merton machine [130]. In [131], the parallel system is 

described in the Cyber-Physical-Social space (CPSS), which 

extend the conventional Cyber-Physical space (CPS) by 

integrating an additional dimension of human and social 

characteristics. Based on the ACP approach, a parallel driver 

intention inference system is proposed in Fig. 7.  

In the artificial society, a virtual driving environment will be 

developed based on the modeling of traffic context as well as 

the driver behaviors such as head, facial, and body features 

[132]. There are plenty of simulation software that can build the 

3D driving context, such as the CarSim or PanoSim. The virtual 

facial images and videos can be generated based on the 

high-resolution 3D scans as used in [133]. The driver facial 

dynamic model can be trained according to the real driver 

patterns using deep learning approaches such as the generative 

adversarial networks (GAN) [134]. Then, a generative 

adversarial imitation learning method can be used to train the 

virtual driver model [135]. The virtual driver will be 

sufficiently evaluated with the data from both the artificial 

world and the real world. Finally, the learned driver behavior 

knowledge concerning the current traffic context can be used 

for the training and testing of the driver intention inference 

model. If the virtual model gives better inference accuracy, it 

will guide the real-world model to deal with challenge tasks and 

update the real-world model with online learning methods. 

With the parallel driver intention inference system, the 

intention inference model can be trained and evaluated with 

much more scenarios so that a more robust intention inference 

model is generated. 

V. CONCLUSION 

Based on this review, driver intention inference is believed 

an important function for ADAS and intelligent vehicles, which 

is able to reduce the conflicts between the driver and the 

intelligent vehicle. Understanding of human intention also 

enables a better design of the decision-making algorithms for 

automated vehicles. In this study, the relationship between 
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tactical and control level intention is clarified. Based on the DII 

framework, the traffic context is viewed as the stimuli for the 

intention, while the driver behavioral information and vehicle 

dynamics are the response to the stimuli. A comprehensive 

evaluation method for the intention inference should consider 

from the aspect of accuracy and prediction horizon. Future 

works for driver intention inference should concentrate on the 

precise modeling of the intention generation process, situation 

and interaction awareness, and autonomous vehicles. 

Meanwhile, it is believed that a parallel DII framework will 

dramatically increase the performance of the DII systems. 
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