43,716 research outputs found

    Detection of U.S. Traffic Signs

    Get PDF

    Traffic sign detection for U.S. roads:Remaining challenges and a case for tracking

    Get PDF
    Abstract — Traffic sign detection is crucial in intelligent vehi-cles, no matter if one’s objective is to develop Advanced Driver Assistance Systems or autonomous cars. Recent advances in traffic sign detection, especially the great effort put into the competition German Traffic Sign Detection Benchmark, have given rise to very reliable detection systems when tested on European signs. The U.S., however, has a rather different approach to traffic sign design. This paper evaluates whether a current state-of-the-art traffic sign detector is useful for American signs. We find that for colorful, distinctively shaped signs, Integral Channel Features work well, but it fails on the large superclass of speed limit signs and similar designs. We also introduce an extension to the largest public dataset of American signs, the LISA Traffic Sign Dataset, and present an evaluation of tracking in the context of sign detection. We show that tracking essentially suppresses all false positives in our test set, and argue that in order to be useful for higher level analysis, any traffic sign detection system should contain tracking

    GLARE: A Dataset for Traffic Sign Detection in Sun Glare

    Full text link
    Real-time machine learning detection algorithms are often found within autonomous vehicle technology and depend on quality datasets. It is essential that these algorithms work correctly in everyday conditions as well as under strong sun glare. Reports indicate glare is one of the two most prominent environment-related reasons for crashes. However, existing datasets, such as LISA and the German Traffic Sign Recognition Benchmark, do not reflect the existence of sun glare at all. This paper presents the GLARE traffic sign dataset: a collection of images with U.S based traffic signs under heavy visual interference by sunlight. GLARE contains 2,157 images of traffic signs with sun glare, pulled from 33 videos of dashcam footage of roads in the United States. It provides an essential enrichment to the widely used LISA Traffic Sign dataset. Our experimental study shows that although several state-of-the-art baseline methods demonstrate superior performance when trained and tested against traffic sign datasets without sun glare, they greatly suffer when tested against GLARE (e.g., ranging from 9% to 21% mean mAP, which is significantly lower than the performances on LISA dataset). We also notice that current architectures have better detection accuracy (e.g., on average 42% mean mAP gain for mainstream algorithms) when trained on images of traffic signs in sun glare

    Modular Traffic Sign Recognition applied to on-vehicle real-time visual detection of American and European speed limit signs

    No full text
    International audienceWe present a new modular traffic signs recognition system, successfully applied to both American and European speed limit signs. Our sign detection step is based only on shape-detection (rectangles or circles). This enables it to work on grayscale images, contrary to most European competitors, which eases robustness to illumination conditions (notably night operation). Speed sign candidates are classified (or rejected) by segmenting potential digits inside them (which is rather original and has several advantages), and then applying a neural digit recognition. The global detection rate is ~90% for both (standard) U.S. and E.U. speed signs, with a misclassification rate 150 minutes of video. The system processes in real-time ~20 frames/s on a standard high-end laptop

    Robust on-vehicle real-time visual detection of American and European speed limit signs, with a modular Traffic Signs Recognition system

    No full text
    International audienceIn this paper, we present robust visual speed limit signs detection and recognition systems for American and European signs. Both are variants of the same modular traffic signs recognition architecture, with a sign detection step based only on shape-detection (rectangles or circles), which makes our systems insensitive to color variability and quite robust to illumination variations. Instead of a global recognition, our system classifies (or rejects) the speed-limit sign candidates by segmenting potential digits inside them, and then applying a neural network digit recognition. This helps handling global sign variability, as long as digits are properly recognized. The global sign detection rate is around 90% for both (standard) U.S. and E.U. speed limit signs, with a misclassification rate below 1%, and not a single validated false alarm in >150 minutes of recorded videos. The system processes in real-time videos with images of 640x480 pixels, at ~20frames/s on a standard 2.13GHz dual-core laptop

    The Reliability and Effectiveness of a Radar-Based Animal Detection System

    Get PDF
    This document contains data on the reliability and effectiveness of an animal detection system along U.S. Hwy 95 near Bonners Ferry, Idaho. The system uses a Doppler radar to detect large mammals (e.g., deer and elk) when they approach the highway. The system met most of the suggested minimum norms for reliability. The total time the warning signs were activated was at most 90 seconds per hour, and likely substantially less. Animal detection systems are designed to detect an approaching animal. After an animal has been detected, warning signs are activated which allow drivers to respond. Results showed that 58.1–67.9% of deer were detected sufficiently early for northbound drivers, and 70.4–85% of deer were detected sufficiently early for southbound drivers. The effect of the activated warning signs on vehicle speed was greatest when road conditions were challenging (e.g., freezing temperatures and snow- and ice-covered road surface) and when visibility was low (night). In summer, there was no measurable benefit of activated warning signs, at least not as far as vehicle speed is concerned. Depending on the conditions in autumn and winter, the activated warning signs resulted in a speed reduction of 0.69 to 4.43 miles per hour. The report includes practical recommendations for operation and maintenance of the system and suggestions for potential future research
    • …
    corecore