
 

  

 

Aalborg Universitet

Detection of U.S. Traffic Signs

Møgelmose, Andreas; Liu, Dongran; Trivedi, Mohan M.

Published in:
I E E E Transactions on Intelligent Transportation Systems

DOI (link to publication from Publisher):
10.1109/TITS.2015.2433019

Publication date:
2015

Document Version
Peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Møgelmose, A., Liu, D., & Trivedi, M. M. (2015). Detection of U.S. Traffic Signs. I E E E Transactions on
Intelligent Transportation Systems, 16(6), 3116 - 3125. DOI: 10.1109/TITS.2015.2433019

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 29, 2017

http://dx.doi.org/10.1109/TITS.2015.2433019
http://vbn.aau.dk/en/publications/detection-of-us-traffic-signs(d71391a1-161e-4273-9e44-9d9c26881a33).html


IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, MONTH 2015 1

Detection of US Traffic Signs
Andreas Møgelmose, Dongran Liu, and Mohan M. Trivedi, Life Fellow, IEEE

Abstract—This paper presents a comprehensive research study
of the detection of US traffic signs. Until now, the research in
Traffic Sign Recognition systems has been centered on European
traffic signs, but signs can look very different across different
parts of the world, and a system which works well in Europe
may indeed not work in the US. We go over the recent advances
in traffic sign detection and discuss the differences in signs
across the world. Then we present a comprehensive extension
to the publicly available LISA-TS traffic sign dataset, almost
doubling its size, now with HD-quality footage. The extension is
made with testing of tracking sign detection systems in mind,
providing videos of traffic sign passes. We apply the Integral
Channel Features and Aggregate Channel Features detection
methods to US traffic signs and show performance numbers
outperforming all previous research on US signs (while also
performing similarly to the state of the art on European signs).
Integral Channel Features have previously been used successfully
for European signs, while Aggregate Channel Features have never
been applied to the field of traffic signs. We take a look at the
performance differences between the two methods and analyze
how they perform on very distinctive signs, as well as white,
rectangular signs, which tend to blend into their environment.

Index Terms—Advanced Driver Assistance, active safety, ma-
chine vision, traffic signs.

I. INTRODUCTION

TRAFFIC sign detection has become an important topic of
attention, not only for researchers in intelligent vehicles

and driver assistance areas but also those active in the machine
vision area. Traffic Sign Recognition (TSR) generally consists
of two layers, detection and classification. With the German
Traffic Sign Recognition Benchmark (GTSRB) in 2011, the
classification problem was largely solved. To achieve a fully
functional TSR system, the detection step needs to work
as well. With the introduction of the German Traffic Sign
Detection Benchmark (GTSDB) competition, a good amount
of work has been done to that effect, even with suggestions
of the detection problem being solved [1]. We contend that
while good progress has definitely been made, the research
community is not quite there yet.

Not all traffic signs look the same, especially the US signs
are significantly different in appearance from those in Europe.
Systems which do not consider them cannot be expected to
perform in the same manner as for what they are designed for
- namely almost exclusively European signs. We have taken
a fresh look at the specific issues, challenges, features, and
evaluation of US traffic signs in a comprehensive manner. To
do this in a systematic way, the very first order of business
is to draw out differences in how these signs appear. Given

A. Møgelmose is with the Visual Analysis of People Lab, Aalborg Univer-
sity, Denmark, and Laboratory for Intelligent and Safe Automobiles (LISA),
UC San Diego, USA. E-mail: am@create.aau.dk.

D. Liu and M. M. Trivedi are with Laboratory for Intelligent and Safe
Automobiles (LISA), UC San Diego, USA.

Figure 1. Countries which have ratified the Vienna Convention on Road Signs
and Signals. Note that apart from these, Japan, Australia, and to a lesser extent
China also follows it, even though they did not ratify it. Data source: [2]

these rather stark appearance differences, we undertook a
major database collection, annotation, organization, and public
distribution effort. Secondly, we explored the overall landscape
of appearance based object detection research - including
European traffic signs - and carefully selected the two most
promising approaches, one (Integral Channel Features) which
has offered very good results on European signs and another
(Aggregate Channel Features) which was very recently intro-
duced in the literature, but has never been applied to the traffic
sign case.

TSR is becoming more and more relevant, as cars ob-
tain better and better Advanced Driver Assistance Systems
(ADAS), and driving becomes more and more automated.
While mapping-based indexing of traffic signs can replace
in-situ recognition to some extent, it will never be able
to work in changing road conditions, such as road work,
and furthermore the initial sign locations and types must be
determined somehow in the first place. Until the infrastructure
is updated to include wireless transponders in all traffic signs,
TSR will have its place in cars.

No matter the application, detecting and recognizing signs
on individual images is not sufficient. If every new detection
in a video feed is treated as a new sign, the driver (human
or not) will quickly be overwhelmed by notifications. Instead
detections must be grouped so all detections pertaining to
the same physical sign are treated like the single sign it is.
The temporal grouping of detections may also have a positive
impact on the classification, since more than one image can
be used to determine the sign type. For temporal grouping,
tracking comes into play. There has been some research into
tracking of traffic signs [3], [4], but it is still in its infancy. One
of the issues in traffic sign tracking is that no suitable dataset
exists for that purpose, something the dataset extension put
forth in this paper addresses, even though we do not tackle
that issue in the experiments here.

The primary goal of this paper is to present the most com-
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(a) (b) (c)

Figure 2. Examples of Vienna Convention signs. (a) Keep right, superclass
mandatory. Sign D15,3. (b) Left turn, superclass danger. Sign A41-2. (c) 60
km/h speed limit, superclass prohibitory. Sign C55.

(a) (b) (c)

Figure 3. US signs corresponding to the Vienna Convention signs in fig. 2. (a)
Keep right, superclass traffic movement. Sign R4-7. (b) Left turn, superclass
warning. Sign W1-1. (c) 50 mph speed limit, superclass speed limit. Sign
R2-1. Image source: [6]

prehensive treatment of the US Traffic Sign Detection studies.
Specifically, this paper makes following three contributions:
• We show that while traffic sign detection has indeed come

a long way over the last couple of years, international
variations in traffic sign designs mean that the problem
is by no means solved yet.

• We test two state-of-the-art detection schemes (ICF and
ACF) on traffic signs from different countries, with spe-
cial focus on US signs, which have largely been ignored
by the community. We compare their results and achieve
state-of-the-art detection results on both European and
US signs.

• We introduce a comprehensive extension to the LISA
Traffic Sign Dataset [5] which allows for detailed testing
of traffic sign tracking.

The paper is structured as follows. In the next section we
cover the latest related studies in the field of traffic sign
detection. Section III briefly covers what traffic signs are, and
especially how traffic sign differ among countries. We also
present the extended LISA Traffic Sign Dataset. Section IV
describes which detection methods we evaluate. In section V
we pit the detection methods against each other.

II. RELATED STUDIES

Traffic sign detection has been researched seriously for
about a decade. For a general overview, as well as a survey of
the research up until 2012, we refer the reader to [5]. Since
2012, the efforts in detection have been stepped up. Following
the successes in pedestrian detection, many of those methods
have been repurposed for traffic signs. The great catalyst
for the recent progress has been the German Traffic Sign
Detection Benchmark (GTSDB) [7], which has really pushed
the state-of-the-art detection performance to near-perfection on
European signs.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. Examples of US signs. (a) Sign R1-1. (b) Sign R5-1. (c) Sign
R4-1. (d) Sign R1-2. (e) Sign R12-1. (f) Sign W3-1. (g) Sign W5-2. (h) Sign
W14-2. (i) Sign W14-2a. (j) Sign W14-3. Image source: [6]

(a) (b)

Figure 5. Histograms of the (a) heights and (b) aspect ratios of the annotated
signs. Statistics for the original dataset and for the extension have been
overlaid for easy comparison.

Previously, the field was split in model-based and learning-
based approaches, but recently the learning-based methods
have taken over completely in defining the state-of-the-art.
Thus, all the front-runners in the GTSDB competition were
learning based. The competition encompassed 18 teams and 3
teams were considered the top performers: Team VISICS [1],
Team Litsi [8], and Team wgy@HIT501 [9]. Team VISICS use
the Integral Channel Features (ChnFtrs or ICF) proposed by
Dollár et al. [10] for pedestrian detection and later improved
in [11]. The same method is evaluated in this paper, along
with its successor, Aggregate Channel Features. Team Litsi
first establishes regions of interest with color classification
and shape matching and the detect signs using HOG and color
histograms with an SVM, features somewhat similar to ICF.
Finally, Team wgy@HIT501 uses HOG features, finding candi-
dates with LDA and performing a more fine-grained detection
using HOG with IK-SVM. In essence, all three approaches are
rather similar, especially when it comes to features. Another
recent paper presenting work on the GTSDB dataset is [12],
which shows somewhat worse detection performance than the
competitors above, but at a faster speed.

For US traffic signs, the activity has been less enthusiastic.
Only a few recent studies take on US traffic signs. In 2012,
[13] evaluated whether synthetic training data of US signs
could be used successfully to train a rudimentary detector, but
performance for the synthetic training data was poor compared
to real-world images. Also in 2012, Staudenmaier et al. [14]
(building on their previous paper [15]) showed a Bayesian
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Classifier Cascade with intensity features and tensor features
(which describe edges). They detect US speed limit signs at
a good rate above 90%, but with several false positives per
image, much, much worse than the current European state-of-
the-art systems. Abukhait et al. [16] use a shape-based detector
to find US speed limit signs - note the model-based, rather
than learning-based approach. The detector is part of a full
recognition system, and the only reported performance figure
is a detection rate of about 88%, but without mention of false
positive rates. Stepping back in time to 2008, Keller et al.
[17] worked on detection of US speed limit signs using a
voting based rectangle detector (see also [18]) followed by
an AdaBoost classifier. Moutarde et al. [19], [20] also tackled
the case of US speed limit signs using a proprietary rectangle
detector. Finally, a precursor to this study was presented in
2014 [4]. To the best of our knowledge, no other US sign
based works have been published to date. The existing papers
have generally focused on speed limit signs, and achieved
significantly worse performance than what we see in the
GTSDB.

III. TRAFFIC SIGNS: INTERNATIONAL CONVENTIONS AND
DIFFERENCES

The bulk of the research in TSR systems has laid in
European signs, or more specifically signs conforming to
the Vienna Convention on Road Signs and Signals [2], [5].
The Vienna Convention has been ratified in 62 countries, as
illustrated in fig. 1, so as an initial effort, going after those
designs is reasonable. Note that while Australia and Japan have
not ratified the convention, they largely design their signs in
similar ways to Europe. The same holds true to a lesser extent
for China. In other words, the Vienna Convention covers most
of Europe and some of Asia, but leaves large parts of the
world out, most notably the Americas and south east Asia.
Also Africa, though that continent is probably less of a market
for ADAS at the moment.

The differences in sign designs matter very much in a
detection context. Fig. 2 shows a typical sign from each of
the major sign superclasses in Europe: Mandatory, danger, and
prohibitory. Each class is very distinctive, not only from the
others, but also from most things in the real world. They all
have both a rather distinctive shape and a strongly colored
border/background. US signs are not in exactly the same
classes, but fig. 3 shows the matching US signs. Fig. 4 shows
more examples of US signs. From the outset, three things are
obvious:

1) US signs bear little to no resemblance to Vienna Conven-
tion signs, at the very least requiring re-training of any
detector.

2) The strong visual structure in Vienna Convention signs
is less present in US signs. The strongest visual clue
for US signs is the yellow diamond of warning signs,
but even that is not present for all warning signs. The
stop sign (which is identical with its Vienna Convention
counterpart) is also visually strong. However, most other
signs are just white rectangles of varying aspect ratios,
which should be challenging to standard detectors which
often rely heavily on color cues.

(a)

(b)

Figure 6. Heatmaps showing the positions of annotations in the frame for (a)
the original dataset and (b) the extension. The contours of the road can almost
be seen in the plots, especially in the extension, which has been captured using
an identical camera setup for all frames. The heat maps give a very strong
hint towards reasonable Regions of Interest for traffic sign detectors.

3) Many US signs contain only text to convey their message,
as opposed to Vienna Convention signs which mostly use
icons and pictograms.

Given these large differences to Vienna Convention signs,
and the size of the car market in the US, it is surprising that
in [5], only two studies were concerned with US traffic signs,
and as we describe in the previous section on related studies,
not many have come out since the publication of the review.

A. Dataset

In order to properly train and evaluate TSR systems, traffic
sign datasets are needed. In [5], the LISA Traffic Sign Dataset
was introduced. In this paper we announce a very large
extension of the LISA Traffic Sign Dataset, which almost
doubles its size with the addition of annotated high-resolution
color images. The LISA-TS Extension is split into a training
set with every 5th frame annotated and a test set with every
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Table I
TRAFFIC SIGN DATASET STATISTICS

Original LISA Traffic
Sign Dataset

LISA-TS Extension GTSD [7] BTSD [1]

Training set Testing set Combined

Number of classes: 47 31 17 35 4 4

Number of annotations: 7855 3672 2422 6094 1206 4627

Number of images: 6610 3307 2331 5638 900 9006

Sign sizes, longest edge: 6 – 168 px 23 – 222 px 25 – 222 px 23 – 222 px 16 – 128 px 16 – 913 px

Image sizes: 640x480 to 1024x522 px 1280x960 px 1280x960 px 1280x960 px 1360x800 px 1628x1236 px

Includes videos: Yes, but not public Yes Yes Yes No Image sequences

Video annotation
density:

Every 5 frames Every 5 frames All frames Mixed N/A N/A

Notes Some images in
grayscale

The provided
classes are actually
superclasses.

Classes are
superclasses.
Multi-view: 8
cameras on one car.

frame annotated, so it is also suitable for testing traffic sign
tracking systems. Tracking is outside of the scope of this paper,
but see [4] for a simple tracking experiment and [3] for a more
advanced solution.

The extension has been collected in and around San Diego,
California on urban streets during the spring of 2014. All
images were captured with a Point Grey FL3 color camera at
the resolution of 1280x960 at approximately 15 fps. Weather
conditions are generally dry and sunny or cloudy.

Table I shows statistics about both LISA-TS and LISA-TS
Extension, and compares them to the two other relevant detec-
tion datasets, the German Traffic Sign Detection set (GTSD)
[7] and the Belgium Traffic Sign Detection set (BTSD) [1].
When LISA-TS and LISA-TS Extension are combined, the
dataset size exceeds even BTSD.

Fig. 5 shows the size and aspect ratio distributions for the
original LISA-TS set and the LISA-TS Extension. Height-wise
we see a similar distribution on both datasets, but shifted
towards larger sizes for the extension. This fits well with
the extension being higher resolution (sizes are measured in
pixels) and the similar distributions show that both datasets
cover signs at approximately the same distances. With regards
to aspect ratio, the distributions are also similar. Many signs
have an aspect ratio of 1.0 - this covers round, square and
octagonal signs, and the remaining are around 0.8, which fits
well with speed limit signs and other rectangular signs. Ratios
outside of this is explained by non-orthogonal viewing angles,
which can significantly distort the sign in the image plane.

Position heatmaps are shown in fig. 6, one for the original
set and one for the extension. In both cases most signs are
clearly positioned along the right shoulder of the road, as
expected. The original set is somewhat less clearly defined
than the extension, undoubtedly because the original set was
captured from different vehicles with slightly differing camera
positions, whereas the extension has been captured with a
single vehicle with a fixed camera position.

Qualitatively, there are some differences between LISA-TS
and LISA-TS Extension. LISA-TS predominantly consists of
low resolution images, some in grayscale, but was captured
over a larger area in Southern California. LISA-TS Extension
has consistent high-res color images, all captured from the

Capture Regis-
tration

Pre-
processing

ROI
selection

Feature
extraction
• Color
• Shape

Detection Classifi-
cation

Figure 7. Flowchart of a typical TSR system. A picture is captured and if
the systems supports detailed real-world positioning of signs, a registration
of this image happens. Afterwards, some pre-processing takes place, usually
color normalization followed by an ROI-selection if necessary. This can speed
up detection by only looking in relevant parts of the image. Usually the ROI is
hardcoded in advance, but saliency measures may also be used. Then relevant
features are extracted, most often from a sliding window, detection happens,
and finally the detected signs are classified. Some systems contain only some
of these blocks, and some systems have this pipeline running in parallel for
different sign superclasses.

same rig, ensuring similar images across the set. It also has a
dedicated test set. The Extension was captured in and around
San Diego. Both datasets suffer from the magnificent sunny
Californian weather, so researchers interested in evaluating
their algorithms in adverse weather conditions should look
elsewhere.

LISA-TS is used as the benchmarking dataset for the sign-
detection part of the VIVA 2015 workshop1 at Intelligent
Vehicles Symposium, 2015. For a further overview of other
datasets, see [5]. In this paper we use both the GTSD and the
expanded LISA-TS dataset.

IV. DETECTION METHODS

We evaluate two state-of-the-art detection methods on traf-
fic sign detection: Integral Channel Features and Aggregate
Channel Features. Both are adapted from pedestrian detec-
tion and the first has previously been used for traffic sign
detection with great success [1]. Our implementation takes its
starting point in the Matlab code of Piotr Dollár’s Computer
Vision Matlab Toolbox [21], with the settings based on his as
well. We also discuss image pre-processing, as we find that
color normalization is absolutely crucial for good detection

1http://cvrr.ucsd.edu/vivachallenge/
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Figure 8. Precision-recall curves for detection of stop signs with and without
color pre-processing. The advantage of color pre-processing is evident across
the curve.

Figure 9. Precision-recall curves for detection of Vienna convention manda-
tory signs, prohibitory signs, and danger signs. Both ICF and ACF are shown
for each superclass. Note that the axes are zoomed to provide a more detailed
picture.

performance. Figure 7 shows the flow of a TSR system. Some
systems may incorporate just a subset of the blocks shown,
but we have included all to give the reader an understanding
of the full process. In this paper we focus on capturing (via
the dataset capture), pre-processing, feature extraction, and
detection. Tracking is not part of the experiments presented
here.

A. Image pre-processing

We use contrast-limited adaptive histogram equalization
(CLAHE) [22] to normalize colors in the input images. It
is a type of histogram equalization which works on tiles
in the image, in order to reduce the excessive contrast and
noise that may arise from ordinary histogram equalization.
Ordinary histogram equalization is done by mapping pixels to
a different value based on the cumulative distribution function
(CDF) of pixel values in the image. Adaptive Histogram

Equalization (AHE), which is slightly simpler than CLAHE,
works by performing this transformation for each pixel only
by considering the CDF of pixels nearby - a tile. This means
that contrast is locally enhanced. A potential problem arises
with AHE, though. If a tile is uniform, its CDF has a strong
peak, which amplifies pixel noise. CLAHE attempts to combat
this by clipping the peak of the CDF so no pixels are too
heavily amplified. To speed up computation, the equalization
is performed in non-overlapping tiles, which are then blended
using bilinear interpolation. Fig. 8 shows the precision-recall
curve for stop sign detection with and without CLAHE, clearly
demonstrating the importance of this step.

B. Integral Channel Features

Integral Channel Features (ICF, sometimes also abbreviated
as ChnFtrs) was first presented by Piotr Dollár for pedestrian
detection [10], and recently repurposed by Mathias et al. [1]
to achieve near-perfect detection on GTSD. In this paper we
put this algorithm to the test on US traffic signs.

The method has two key ingredients: Features computed
over 10 different “channels” of the image, and detection using
a boosted decision forest. First, the input image is split into 10
channels. The channels used are the three LUV color channels,
one for unoriented gradient magnitude, and six for gradients
in varying directions. For each of these channels, first-order
Haar-like features are computed. This is simply the difference
of the sum of two different rectangular image regions. While
higher-order features are a possibility, the gain from those is
very low. Feature computation is sped up by using the integral
image of each channel, C, defined as

CCj(x, y) =
∑

x′≤x,y′≤y

Cj(x
′, y′), j = 1, . . . , D (1)

where D is the number of channels. In [1], detectors for each
sign are trained for various skewed aspect ratios, to account
for non-orthogonal viewing angles. We found only negligible
performance gains from this and thus do not have that as part
of our training.

After the features are computed, an AdaBoost classifier is
learned with depth-2 decision trees as weak learners. This
classifier is then run on a sliding window on the input image.

C. Aggregate Channel Features

In 2014, Dollár et al. published an enhanced version of ICF,
called Aggregate Channel Features (ACF) [23]. Ostensibly,
ACF was introduced as a faster alternative to ICF, but in some
cases it shows better detection performance as well. The basic
principle about computing features across channels is the same
as ICF, and indeed the same channels are used. The Haar-like
features are replaced with an even simpler scheme: summing
up blocks of pixels at various scales. This is obviously faster
than computing the already simple Haar features, but as we
shall see provides similar and sometimes even better detection.
The boosted decision forest is preserved as the classifier of
choice.
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Figure 10. Examples of Vienna convention signs which ICF misses. By row:
Danger, mandatory and prohibitory.

Table II
LISA-TS TRAINING AND TESTING STATISTICS

Number of images
Superclass Training Test

Diamond 1229 406

Stop 1182 1152

NoTurn 185 83

SpeedLimit 750 680

V. EVALUATIONS

We evaluate the two detectors on both the GTSD (to verify
that we can replicate the near-perfect results of [1]) and more
importantly on the LISA-TS, to show how the methods work
on US signs and highlight the challenges unique to US traffic
signs. The PASCAL measure [24] has been used to determine
detection rates, as is standard. A detection is considered true if
the overlap of the detection bounding box and the annotation
is more than 50%:

ao ≡
area(BBdt ∩BBgt)

area(BBdt ∪BBgt)
> 0.5 (2)

where BBdt is the bounding box of the detection and BBgt

the bounding box of the ground truth.

A. European signs

The GTSB is divided into a separate training and test set
and spans 4 superclasses: prohibitory signs (circular with a
red border), mandatory signs (circular and blue), danger signs
(triangular with a red border), and other signs, comprising
all signs which do not fit in any of the three other cate-
gories. Other is a very diverse category spanning many shapes
and colors, and since it was not considered in the GTSD
benchmark, we also ignore it. Results for each of the three
superclasses are shown in fig. 9. ACF detects danger signs
perfectly - no misses and no false positives. The detection is
close to perfect for the remaining two classes as well. Overall,
the performance is comparable to that of Mathias et al. in [1].
We fare a little worse on prohibitory signs at an Area Under
Curve (AUC) of 99.58/99.86 for ICF/ACF vs. their 100 and

Figure 11. Examples of false positives on Vienna convention signs for ICF.
By row: Danger, mandatory and prohibitory.

Figure 12. Precision-recall curves for detection of US stop signs, warning
signs, and no-turn signs. Both ICF and ACF are shown for each superclass.
Note that the axes are zoomed to provide a more detailed picture.

a little better on mandatory signs with 98.52/98.38 vs. their
96.98. ICF generally performs very slightly lower than ACF,
due to just a few troublesome images, see figures 10 and 11. It
is not impossible that both could be further tweaked to obtain
perfect scores.

B. US signs

We tested the algorithms on the extended LISA-TS dataset,
split up into a training set and a test set. In total, the training set
comprise 3346 pictures and the test set contains 2321 pictures.
Details for each superclass can be seen in table II.

Detection results for US signs are shown in fig. 12. The
precision-recall is generally worse than for European signs,
though the diamond superclass just barely surpasses the Eu-
ropean mandatory superclass. This shows that even the best
performing methods for European signs do not necessarily
generalize to other traffic sign design schemes. It is also
clear that ACF performs significantly better than ICF for US
signs, whereas the difference for European signs was much
less pronounced. Diving into the numbers, diamond signs
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Figure 13. Examples of false positive on US signs. Each row is one superclass:
Stop, diamond, and no turn.

are still detected with what can be considered very good
performance with an AUC of 98.98 for ACF. The two other
superclasses also have an AUC above 95, but there is room
for improvement. Examples of false detections and misses can
be seen in fig. 13 and 14.

C. US speed limit signs

As shown above, ICF and especially ACF performs very
well on European signs and “easy” US superclasses. Common
for all these signs is that they have very strong color and
shape cues. But a large amount of US signs are not that
easy to distinguish (see section III). Many are simply white
rectangles. A good representative of this design is the speed
limit superclass, shown in fig. 3c. Thus, we dedicate this
section to that specific superclass.

We have run both our ICF and ACF detector on this
superclass, and indeed the performance is worse. Fig. 15
shows precision-recall curves for both detectors. The other US
superclasses have been added for reference. The performance
is significantly worse than for the more salient superclasses
with AUCs under 90 for both detectors. Still, we note that
the performance is much better than the competing US sign
detection systems mention in Related Studies (section II).
Interestingly, ICF performs slightly better than ACF for this
particular superclass. Since there is no color in these signs,
the LUV channels used by both detection schemes have very
limited impact, other than discarding brightly colored objects.
It is also unlikely that a better color normalization scheme will
have a significant impact, as was the case for colored signs.
Examples of false detections and misses can be seen in fig.
16.

We consider detection of this superclass and its colorless
rectangular siblings an open problem. Note also that in this
study, we have only looked at speed limit signs, and there is a
whole host of other very similar designs. It is not clear from
this study whether they should all be lumped together in a
monolithic detector, or it is better to have multiple dedicated
detectors. While there can be significantly semantic difference
for humans between a speed limit sign and a do not pass
sign, they have a very similar design, pointing towards the

Figure 14. Examples of missed US signs. Each row is one superclass: Stop,
diamond, and no turn.

Figure 15. Precision-recall curves for detection of US speed limit signs. For
comparison, stop signs, warning signs, and no-turn signs are also shown. Both
ICF and ACF are shown for each superclass. The axes are zoomed to provide
a more detailed picture, but not as much as for previous figures.

monolithic solution. On the other hand, speed limit signs have
very large characters for the numbers, a visual contrast to other
text based signs. Furthermore, some signs like that in fig. 3a
contain no text at all. It is also worth considering that many
of the white rectangular signs have different aspect ratios.

Figure 16. Examples of troublesome US speed limit signs. First row shows
missed signs and second row shows false positives.
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(a) (b)

Figure 17. Detection performance using a) only color channels and b) only shape channels for stop and speed limit signs. Shape is a stronger cue.

D. Channel analysis

To better understand the contributions of individual compo-
nents in detection for different signs, we have run detectors
using color channels only and shape channels only (fig. 17).
The broad conclusion is that shape is a stronger cue than color.
In particular for ICF, where the shape-only detection is close
to the performance with all channels for both superclasses
- ICF also fails completely on speed limit signs when only
color is used. ACF shows a stronger reliance on color cues,
though shape is still the most important. This helps explain
why ICF performs better than ACF for speed limit signs when
all channels are used. Overall, it is interesting to see how
differently color and shape contribute in the two methods,
given that both methods are building on the same principles.
In all cases, though, the combined detector performs better
than either of the channel subsets on their own.

Unsurprisingly, color detection works much better on stop
signs which have a strong red color, than on speed limit signs,
which are just white so the color cue can only be used to
discard strongly colored candidate windows.

VI. CONCLUDING REMARKS

Traffic sign detection has come far on European signs, but
not much attention has been given to US signs. This study
remedies this discrepancy, by bringing detection of some US
sign types - diamond warning signs, stop signs, and no turn
signs - up on par with detection rates for European traffic signs
with AUCs of 98.98, 96.11. and 96.17, respectively. We test
the established ICF detector on US signs and are the first to
bring the newer and (in some cases) better ACF algorithm to
the domain of traffic sign detection.

Our analysis shows that while we achieve better detection
rates on speed limit signs than any studies before us, there
is still work to be done on that particular superclass. It is
not a given that the methods tested in this paper are the
way to go when detecting signs with limited color- and shape
cues. Furthermore we provide a large extension to the existing

LISA-TS traffic sign dataset, which is publicly available and
the only large-scale dataset of US traffic signs in existence.

The most obvious place to direct future research - at least
in pure detection - is to push the boundary in detection of US
speed limit signs and all the visually related white rectangular
signs. Of course tracking is also very relevant for combining
distinct detections of the same sign into a single entity, but
as indicated by [4], very complicated tracking schemes are
perhaps unnecessary in the TSR domain.

A detection method based off of the same methods used
here was presented in [25], and it might be possible to adapt to
traffic signs and account for detection of traffic signs which are
significantly skewed with respect to the image plane. Another
interesting aspect could be to combine traffic sign detection
with vehicle detection [26] for a more holistic understanding
of the traffic situation - for example when a sign signals a lane
merge, the position of other cars is very relevant.

Finally, combining a TSR system with a driver attention
estimation system, such as in [27], could result in a driver
assistance system which dynamically informs the driver only
about relevant signs he or she has not seen. This could
significantly reduce the rate of signs missed by the driver,
while also not causing information overload - as shown in
[28] there are whole classes of signs which drivers are very
bad at noticing, so such a system would certainly be valuable.

APPENDIX A
LISA US TRAFFIC SIGN DATA SET: EXPANDED VERSION

The LISA Traffic Sign Dataset is the first and only publicly
available data set containing US traffic signs. It was introduced
in the 2012 paper Vision based Traffic Sign Detection and
Analysis for Intelligent Driver Assistance Systems: Perspec-
tives and Survey by Andreas Møgelmose, Mohan M. Trivedi,
and Thomas B. Moeslund [5].

It is intended to be used in the development of Traffic Sign
Recognition (TSR) systems. The original dataset was captured
and released in 2012. In 2014, an extension was made to
include higher resolution color images and a dedicated test



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. ?, NO. ?, MONTH 2015 9

set where every frame is annotated, to facilitate evaluation of
traffic sign tracking systems.

LISA-TS can be downloaded from http://cvrr.ucsd.edu/
LISA/lisa-traffic-sign-dataset.html.

Main highlights of the contents and classes of the LISA-TS
data set are presented below.

A. Breakdown by class

1) Original dataset:

Superclasses
3314 warning 1508 speed limit

73 noTurn
Detailed classes
294 addedLane 34 slow
37 curveLeft 11 speedLimit15
50 curveRight 349 speedLimit25
35 dip 140 speedLimit30
23 doNotEnter 538 speedLimit35
9 doNotPass 73 speedLimit40
2 intersection 141 speedLimit45

331 keepRight 48 speedLimit50
210 laneEnds 2 speedLimit55
266 merge 74 speedLimit65
47 noLeftTurn 132 speedLimitUrdbl
26 noRightTurn 1821 stop

1085 pedestrianCrossing 168 stopAhead
11 rampSpeedAdvisory20 5 thruMergeLeft
5 rampSpeedAdvisory35 7 thruMergeRight
3 rampSpeedAdvisory40 19 thruTrafficMergeLeft

29 rampSpeedAdvisory45 60 truckSpeedLimit55
16 rampSpeedAdvisory50 32 turnLeft
3 rampSpeedAdvisoryUrdbl 92 turnRight

77 rightLaneMustTurn 236 yield
53 roundabout 57 yieldAhead

133 school 21 zoneAhead25
105 schoolSpeedLimit25 20 zoneAhead45
925 signalAhead

In total: 7855 sign annotations

2) Dataset extension: Training:

Superclasses
1232 warning 752 speed limit
184 noTurn

Detailed classes
2 addedLane 91 school

20 bicyclesMayUseFullLane 428 signalAhead
50 curveLeft 4 speedBumpsAhead
59 curveRight 17 speedLimit15
39 doNotEnter 259 speedLimit25
11 intersection 90 speedLimit30
24 intersectionLaneControl 158 speedLimit35

127 keepRight 92 speedLimit40
47 laneEnds 80 speedLimit45
6 leftAndUTurnControl 53 speedLimit50

18 merge 3 speedLimit60
73 noLeftAndUTurn 1181 stop
8 noParking 86 stopAhead

16 noRightTurn 4 yieldAhead
95 noUTurn 8 yieldToPedestrian

523 pedestrianCrossing
In total: 3672 sign annotations

3) Dataset extension: Testing:

Superclasses
461 warning 679 speed limit
82 noTurn

Detailed classes
13 curveRight 40 signalAhead
17 dip 406 speedLimit25
21 doNotEnter 264 speedLimit30
11 keepRight 9 speedLimit45
37 merge 1151 stop
29 noLeftTurn 86 stopAhead
53 noUTurn 43 turnRight
80 pedestrianCrossing 145 warningUrdbl
17 school

In total: 2422 sign annotations

B. List of superclasses
warning addedLane speedLimit speedLimit15

curveLeft speedLimit25
curveRight speedLimit30
dip speedLimit35
intersection speedLimit40
laneEnds speedLimit45
merge speedLimit50
pedestrianCrossing speedLimit55
roundAbout speedLimit60
signalAhead speedLimit65
slow
speedBumpsAhead
stopAhead
thruMergeLeft
thruMergeRight
turnLeft
turnRight
yieldAhead
warningUrdbl

noTurn noLeftAndUTurn
noUTurn
noLeftTurn
noRightTurn
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