17,898 research outputs found

    Combined 3D thinning and greedy algorithm to approximate realistic particles with corrected mechanical properties

    Full text link
    The shape of irregular particles has significant influence on micro- and macro-scopic behavior of granular systems. This paper presents a combined 3D thinning and greedy set-covering algorithm to approximate realistic particles with a clump of overlapping spheres for discrete element method (DEM) simulations. First, the particle medial surface (or surface skeleton), from which all candidate (maximal inscribed) spheres can be generated, is computed by the topological 3D thinning. Then, the clump generation procedure is converted into a greedy set-covering (SCP) problem. To correct the mass distribution due to highly overlapped spheres inside the clump, linear programming (LP) is used to adjust the density of each component sphere, such that the aggregate properties mass, center of mass and inertia tensor are identical or close enough to the prototypical particle. In order to find the optimal approximation accuracy (volume coverage: ratio of clump's volume to the original particle's volume), particle flow of 3 different shapes in a rotating drum are conducted. It was observed that the dynamic angle of repose starts to converge for all particle shapes at 85% volume coverage (spheres per clump < 30), which implies the possible optimal resolution to capture the mechanical behavior of the system.Comment: 34 pages, 13 figure

    Optimal Camera Placement to measure Distances Conservativly Regarding Static and Dynamic Obstacles

    Get PDF
    In modern production facilities industrial robots and humans are supposed to interact sharing a common working area. In order to avoid collisions, the distances between objects need to be measured conservatively which can be done by a camera network. To estimate the acquired distance, unmodelled objects, e.g., an interacting human, need to be modelled and distinguished from premodelled objects like workbenches or robots by image processing such as the background subtraction method. The quality of such an approach massively depends on the settings of the camera network, that is the positions and orientations of the individual cameras. Of particular interest in this context is the minimization of the error of the distance using the objects modelled by the background subtraction method instead of the real objects. Here, we show how this minimization can be formulated as an abstract optimization problem. Moreover, we state various aspects on the implementation as well as reasons for the selection of a suitable optimization method, analyze the complexity of the proposed method and present a basic version used for extensive experiments.Comment: 9 pages, 10 figure
    • …
    corecore