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Abstract— In modern production facilities industrial robots
and humans are supposed to interact sharing a common
working area. In order to avoid collisions, the distances
between objects need to be measured conservatively which
can be done by a camera network. To estimate the acquired
distance, unmodelled objects, e.g., an interacting human, need
to be modelled and distinguished from premodelled objects
like workbenches or robots by image processing such as the
background subtraction method.

The quality of such an approach massively depends on the
settings of the camera network, that is the positions and orien-
tations of the individual cameras. Of particular interest in this
context is the minimization of the error of the distance using the
objects modelled by the background subtraction method instead
of the real objects. Here, we show how this minimization can be
formulated as an abstract optimization problem. Moreover, we
state various aspects on the implementation as well as reasons
for the selection of a suitable optimization method, analyze the
complexity of the proposed method and present a basic version
used for extensive experiments.

Index Terms— Closed range photogrammetry, optimization,
camera network, camera placement, error minimization

I. INTRODUCTION

Nowadays, human/machine interaction is no longer re-
stricted to humans programming machines and operating
them from outside their working range. Instead, one tries
to increase the efficiency of such a cooperation by allowing
both actors to share the same working area. In such a context,
safety precautions need to be imposed to avoid collisions,
i.e., the distance between human and machine interacting in a
common area needs to be reconstructed continuously in order
to detect critical situations. To this end, usually a network
of cameras is installed to, e.g., ensure that every corner
of the room can be watched, every trail can be followed
or every object can be reconstructed correctly. Within this
work, we focus on computing an optimal configuration of
the camera network in order to measure the distances as
correct as possible but still conservatively.

After a brief review on previous results concerning the
predescribed distance measurement, we show how an unmo-
delled (human) object can be contoured by a 3D background
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subtraction method. We extend this scheme to cover both
static and dynamic obstacles, some of which are modelled in
advance but still occlude the vision of the sensor. In Section
III, we rigorously formulate the problem of minimizing the
error made by using the associated model instead of the
original collective of unmodelled objects. Considering the
implementation of a solution method, we discuss various
difficulties such as, e.g., the evaluation of the intersection of
the cones corresponding to each camera in Section IV and
also give an outline of concepts to work these issues. In the
final Sections V and VI, we analyze the complexity of our
basic implementation by a series of numerical experiments
and conclude the article by given an outlook on methods to
further improve the proposed method.

II. STATE OF THE ART

Many camera placement methods have to deal with a
trade-off between the quality of observations and the quantity
of pieces of information which are captured by the cameras.
The latter aspect is important for camera networks which ha-
ve to decide whether an item or an action has been observed.
There have been investigations about how to position and
orientate cameras subject to observing a maximal number of
surfaces [8] and different courses of action [1,5,6] as well as
maximizing the volume of the surveillance aread [14] or the
number of objects [11]–[13]. Another common goal in this
context is to be able to observe all items of a given set but
minimize the amount of cameras in addition to obtain their
positions and orientations [4,11]–[13]. This issue is called
“Art Gallery Problem” especially when speaking of two–
dimensional space.

Apart from deciding whether an object has been detected
by a camera network, another task is to obtain detailed
geometrical data of the observed item like its position and
measurements of its corners, curves, surfaces, objects etc. As
described in [10] determining this information for distances
smaller than a few hundred meters by cameras belongs to the
field ‘close range photogrammetry’. In order to configure
a camera network to cope with such tasks, one usually
minimizes the error of observed and reconstructed items.
Often the phrase ‘Photogrammetric Network Design’ is used
to express minimizing the reconstruction error for several
(three-dimensional) points. The default assumption in this
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context, however, is that no occlusions occur, cf. [7,16]–[19]
for details. Optimally localizing an entire object which is not
occluded is an assignment treated in [3]. Furthermore, many
approaches compensate for the increasing complexity of the
problem by oversimplifying matters: One common approach
is to restrain the amount of cameras (in [7] two cameras
are used) or their position and orientation. Considering the
latter, known approaches are the viewing sphere model given
in [18,19] or the idea of situating all cameras on a plane and
orientating them horizontally, cf. [3]).

In contrast to these approaches, we discuss optimizing
positions and orientations of cameras in a network in the
context of the background subtraction method which is used
to determine a visual hull of a solid object. By means of this
visual hull, distances can be computed easily which renders
this approach to be a different simplification. Occlusions of
solids to be reconstructed obscure the view and enlarge the
visual hull. In order to get the minimal error of the construc-
tion of the hull, [23] assumes that minimizing the occuring
occlusions of solids also reduces and thus specifies their
possibile locations. However, neither obstacles nor opening
angles other than π are discussed in [23] and additionally the
orientation of the camera is neglected as a variable since it is
simply orientated towards the object. In [2], static obstacles
are considered but the amount of cameras is chosen out of
a preinstalled set.

Since we are not interested in optimizing the quantity of
observed objects but the quality of data, our approach is dif-
ferent to most of the discussed results. Note that the quality
of information can be obtained by various types of image
processing. Here, we consider the background subtraction
method to obtain a visual hull of a given object. Within our
approach, we optimize the positions and orientations of a
fixed amount of cameras as to minimize the error that is
made by evaluating distances to the visual hull. In contrast
to existing results, our goal is to incorporate the aspects of
occuring static or dynamic obstacles into our calculations
but also to exploit all degrees of freedom available in an
unconstrained camera network. Nevertheless, distances are
to be evaluated conservativly.

III. VISIBILITY ANALYSIS

Within this section, it will be shown how to condition the
objective function on the cameras position and orientation,
thus, we successively build up a mathematical representation
of the optimization problem. We start off by defining the
critical area as well as the to be reconstructed unmodelled
objects and corresponding abstract models in Section III-A.
This will allow us to formally state the objective function
which we aim to minimize. In the following Section III-B,
we define the camera network and its degrees of freedom, i.e.
the position and orientation of each camera. These degrees
of freedom allow us to parametrize the model of the to
be reconstructed object. Additionally, this tuple of degrees
of freedom will serve as an optimization variable in the
minimization problem stated in Section III-C. To cover all
possible scenarios, this problem is extended by incorporating

both static and dynamic obstacles as well as an evolving time
component.

A. Formalizing the Problem

Let U ⊂ R3 be a spacial area based on which information
about humans, perils, obstacles and also cameras can be
given. Consider S ⊂ U to be the surveillance area, where
critical points of the set C ⊂ S as well as objects, such a
human or a robot, are monitored.

For the moment, we neglect obstacles completely, we
just distinguish two types of objects, to explain the basic
idea of reconstructing an object by the means of a camera
network: If a detailed model of an object exists describing
its appearance like location, shape, color or else, the object
is called modelled. If this is not the case the object is called
unmodelled. This is motivated by the following scenario: If
humans move unpredictably within the surveillance area, i.e.
without a given route, their appearance is unmodelled and
needs to be reconstructed to be used for further calculations.
The model of an unmodelled object can be reconstructed by
the means of a camera network. Therefore, let Ou(a) ⊂ S be
a complete set of points included in one or more unmodelled
objects, depending on the appearance of unmodelled objects
specified by the parameter a ∈ Rk. We refer to these
objects as unmodelled collective. Since automaticly placing
the cameras for such a scenario is incomputable without
information on the unmodelled collective, we impose the
assumption that the distribution P : 2R

k → [0, 1] of the
appearance a ∈ Rk is known.

As the safety of a human being must be guaranteed in any
case, the distance

d(C,Ou(a)) := min{d(x, y) | x ∈ C, y ∈ Ou(a)}

has to be computed conservatively and security measures
need to be taken if the unmodelled collective Ou(a) appoa-
ches the critical points C. Here d(·, ·) denotes a standard
distance function. If the exact set Ou(a) was known, this
distance could be evaluated easily. As we do not directly
know the value of a ∈ Rk and therefore can only guess the
points that are included in Ou(a), we need to approximate a
(as a consequence also conservative) model M(a) ⊂ S, see
Fig. 1.

Fig. 1. Surveillance area S: Distance between critical points C
and unmodelled collective (black) and distance to the approxi-
mated model (green)
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Note that for now M(a) is an abstract approximation of
Ou(a) with respect to the parameter a only. In order to
actually compute M(a), a sensor network and its degrees
of freedom come into play, see Section III-B for details.
Still, the abstract approximation allows us to formalize our
overall task, i.e. to minimize the difference between the
approximation based distance d(C,M(a)) and the real di-
stance d(C,Ou(a))). Taking the assumed distribution of the
parameter a into account, we aim to minimize the functional∫

a∈Rk

[
d(C,Ou(a))− d(C,M(a))

]2
dP(a). (1)

Note that for the optimization we need to be aware of
possible appearances of the object in order to let the integral
pass through their space a ∈ Rk. Thus all appearances a ∈
Rk of the unmodelled collective should be known.

B. Building a Model with the Camera Network

In the previous section we saw that in order to evaluate the
functional (1), a model M(a) of the unmodelled collective
Ou(a) ⊂ U is required. To obtain such a model, we impose
a camera network N consisting of n ∈ N Cameras. Each
camera can be placed and orientated with a setting E = (U×
[−π, π] × [−π2 ,

π
2 ]). Here, the first term corresponds to the

position of the camera whereas the second and third denote
the angles ‘yaw’ and ‘pitch’ respectively. For simplicity of
exposition, we exclusively considered circular cones in our
implementation which allowed us to neglect the angle ‘roll’
as a degree of freedom in the setting of a single camera.
Hence, each camera exhibits five degrees of freedom, three
for the position and two for its orientation.

Thus, each camera can be regarded as a tupel (e, p) ∈
E× U whereas its produced output regarding the parameter
a ∈ Rk of unmodelled collective is a function

κ : (E×U×Rk)→ V
(e, p, a) 7→ κe,a(p)

that is - given the setting e ∈ E and the appearance of the
unmodelled collective a ∈ Rk - each point p ∈ U is mapped
onto a sensor value v ∈ V where

V := {free, occupied, undetectable}.

This set is adjusted to the evaluation of the network’s
images by the change detection method (e.g. background
subtraction). The sensor value κe,a(p) of a point p ∈ U is
free if this point is perceived as not part of the unmodelled
collective. The value occupied resembles the possibility that
the point could be part of the unmodelled collective (i.e.
the point might be occupied by the collective). If the sensor
cannot make the decision, e.g. this is the case for cameras
that cannot ‘see’ behind walls, the value is undetectable.
Obstacles like walls will be discussed in Section III-C. To
obtain the values of set V one could apply the method of
background subtraction, which is discussed in [9] elaborately.
Although our method is not restricted to a pixel model which
is considered in [9], the idea of this work remains the same.

Thus, we will only provide the prior formulization of the
values, as to explain their role in building the model of an
unmodelled collective.

According to the definition of the set V, all cameras split
the set U into three different subsets:

Pf(e, a) = {u ∈ U | κe,a(u) =̂ ‘free’}
Poc(e, a) = {u ∈ U | κe,a(u) =̂ ‘occupied’}
Pnd(e, a) = {u ∈ U | κe,a(u) =̂ ‘undetectable’}

We state here without proof that we have constructed these
parts to be a pairwise disjoint conjunction of U, i.e.

U = Pf(e, a) ∪ Poc(e, a) ∪ Pnd(e, a)

with Pf(e, a)∩ Poc(e, a) = Pf(e, a)∩ Pnd(e, a) = Poc(e, a)∩
Pnd(e, a) = ∅ hold.

The unmodelled collective Ou(a) cannot be situated inside
Pf(e, a), all we know is

Ou(a) ⊂ Poc(e, a) ∪ Pnd(e, a) = U\Pf(e, a).

Since this inclusion holds for the parameter a ∈ Rk and one
camera with settings e ∈ E, obviously the following is true
if we consider a camera network N consisting of n cameras
with settings ei, i = 1, . . . , n:

Ou(a) ⊂ (U\Pf(e1, a) ∩ . . . ∩ U\Pf(en, a))

= U\
(
Pf(e1, a) ∪ . . . ∪ Pf(en, a)

)
Note that this set is already a good approximation of the
unmodelled collective if we considered the entire set U.
However, as we only monitor the surveillance area S, we
define the desired model M(a) of the unmodelled collective
Ou(a) as the intersection with the set S, i.e.,

M(a) ≡M(a, e1, . . . , en)

:= S ∩
(
U\
(
Pf(e1, a) ∪ . . . ∪ Pf(en, a)

))
(2)

This is the basic model that can be used to calculate
Formula (1). In the following, we will extend our setting
to incorporate a time dependency and to cover for different
types of obstacles.

C. Adding Time and Obstacles

So far, we have only considered a static scene to be
analyzed. Motivated by moving objects, we extend our
setting by introducing a time dependency to the process
under surveillance. Therefore, we declare the time interval
of interest I = [t0, t∗], in which t0 denotes the moment
the reference image is taken and t∗ corresponds to the last
instant the surveillance area ought to be observed. Thus, the
unmodelled collective Ou(a(t)), its probability distribution
P(a(t)) and its approximation M(a(t)) ⊂ S as well as
the set of critical points C(t) change in time t ∈ I . As a
simple extension of (1) we obtain the time dependend error
functional
t∗∫

t0

∫
a(t)∈Rk

[
d(C(t), Ou(a(t)))− d(C(t),M(a(t), e1, . . . , en))

]2
dP(a(t))dt

(3)
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In a second step, we add some more details to the scene
under surveillance. To this end, we specify several categories
and properties of objects O ⊂ S, which we are particularly
interested in and which affect the reconstruction of the
current scene. Right from the beginning we have considered
unmodelled objects. In contrast to modelled objects, these
objects need to be reconstructed in order to track them. In the
following, we additionally distinguish objects based on the
characteristical behavior “static/dynamic”, “target/obstacle”
and “rigid/nonrigid”, neglecting those objects that cannot be
noticed by the sensors (like a closed glass door for cameras
without distance sensor).

We define a target T ⊂ O of a sensor network as
an object which ought to be monitored and in our case
reconstructed. An object B ⊂ O which is not a target
is called obstacle. Furthermore, we distinguish obstacles
based on their physical character: An obstacle B features a
rigid nature (like furniture), if the inpenetrability condition
T ∩Br = ∅ holds, and is denoted by the index r in Br.

The method proposed in [9] constructs a visual hull
of an object by background subtraction, i.e. via change
detection. In context of change detection methods another
characteristical behavior of objects is relevant: A static object
is an object Os ⊂ O which is known to affect the given
sensors in the same way at any time. If this is not the case,
it is called dynamic, which we indicate by adding a subscript
and a time dependency Od(t). More specifically, within the
proposed background subtraction method the value of each
pixel of a current image is subtracted from its counterpart
within the reference image which has been taken beforehand.
Thus, any change (like size/color/location) occuring after
the reference image has been taken leaves a mark on the
subtracted image, i.e., if the scene consists of static objects
only, then the subtracted image is blank. For this reason,
static objects must be placed in the scene before the reference
picture is taken, and dynamic objects must not.

Within the rest of this work, we consider all unmodelled
objects to be reconstructed, i.e. in (3) we have

Ou(a(t)) := T (a(t)) (4)

Consequently, the unmodelled collective and its distance to
the critical points are dynamic targets. Thus, we always
consider an obstacle to be a modelled obstacle since all our
unmodelled objects are targets. Furthermore, all obstacles
are considered rigid. To formalize the human-robot-scene let
Brs ⊂ O and Brd(t) ⊂ O be the collective of static and
of dynamic obstacles with time t ∈ [t0, t∗], respectively.
We incorporate these new aspects into the model of the
unmodelled collective in (3) by intuitively extending our
notation to

M(a(t), e1, . . . , en) :=M(a(t), e1, . . . , en, B
r
s , B

r
d(t)).

(5)

Last – as a robot is a dynamic obstacle in addition to a
security thread (f.e. when moving too fast) – we define the

critical points in (3) as the collective of dynamic obstacles

C(t) := Brd(t). (6)

Note that there are dynamic obstacles next to dynamic
targets i.e. the unmodelled collective. Thus a dynamical
obstacle could easily be regarded as an object of the un-
modelled collective since both evoke akin reactions of the
change detection method. In our approach the obstacles are
fully modelled and thus define a target free zone since they
are physical obstacles. Still, inaccuracies of the acciden-
tal change detection leave fragments outside the dynamic
obstacle, in our case outside the critical points. As a con-
sequence the required distance between critical points and
target is reduced to zero. Publication [9] solves this issue
by introducing plausibility checks, in which predicates that
characterize the target (like volume, height, etc.) are used to
sort out the fragments.

In conclusion, our aim is to solve the problem

Minimize (3)
using definitions (4), (5) and (6)

subject to e1, . . . , en ∈ E

i.e., to compute the optimal positions of n cameras with
settings e1, . . . , en such that the measurement error is mi-
nimized.

IV. ASPECTS OF OPTIMIZATION

There are various ways to compute Equation (3) referring
to: Representing the model, solving the integral and solving
the optimization, as can be seen further on.

A. Discretization of time and distribution

We would at first like to state that the distance
d(C,M(a, . . . 3)) between the model and another set does
not need to be continuous at every appearance a even if
the distance d(C,Ou(a)) to the unmodelled collective is
continuous at a. This point can also be made for Equation (3)
but we stick to Equation (1) for reasons of simplicity. Such
a case is illustrated in Fig. 2. As the original unmodelled
collective Ou(a) of the appearance a ∈ Rk does not
necessarily need to be convex or even connected, given the
settings ei, i = 1, . . . , n ∈ E, the unfree parts of the sensors
U\Pf(ei, a) do not need to be connected, either. The model
is constructed of an intersection of these parts (see Equation
(2)). But, as intersections of disconnected parts do not need
to be continuous on a ∈ Rk (e.g. referring to Hausdorff–
metrics), the distance d(C,M(a, . . .)) between the model
and another set does not need to be continuous at every
appearance a.

Since only integrals with continuous integrants can gene-
rally be calculated as a whole or else need to be splitted,
such a discontinuous function becomes a problem when
being an integrant as of Formula (1). In our case a point
of discontinuity of the distance as a function of a cannot
be derived easily, as it would have to be extracted from an
individual nonrelated analysis depending not only on a or
t but also on the sensor settings ei, i = 1, . . . , n. While
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Fig. 2. Discontinuity of the distance between perilous points C and
the approximated model, consisting of and intersection the nonfree
part of camera 1, U\Pf(e1, a)(green), and the nonfree part of camera
2, Pf(e2, a)(orange).

in simple cases this is possible, we spare such an altering
analysis by discretizing appearance and time. Here, just the
l = 1, . . . , L most important appearances of the unmodelled
collective al ∈ Rk and h = 1, . . . ,H most important time
steps th ∈ [t0, t∗] with t0 = t1 and t∗ = tH and with their
weights

ωl,h = P(al(th)) ∈ [0, 1]

are modelled. Accordingly, the following weighted sum
approximates the integral of Formula (3):

ErrL,H(e1, . . . , en) = (7)
H∑

h=1

L∑
l=1

ωl,m·
[
d
(
C(th), Ou(al(th))

)
− d

(
C(th),M(al(th), e1, . . . , en, th)

)]2
B. Discretizing space by voxels

The next challenge – building an intersection of (free-
form) solids – has claimed to be subject of discussion for
more than a quater of a century and still is an issue of recent
investigations. The publication [22] describes three main
areas of solving this issue depending on their representation,
each going with pros and cons.

Solids represented by polygonial meshs can be intersected
by exact arithmetic and intervall computation, checking
surface membership afterwards. The major concerns of this
approach are robustness and efficiency (e.g., while intersec-
ting two tangetially connected polyhedra/polygons inside-out
facettes are computed).

Approximate methods (e.g. applying exact methods to
a rough mesh of solids and refine the result) exist for
meshs, too. Robustness problems (constructing breaks in the
boundary) are in this case compensated by time consuming
perturbation methods or interdependent operations which
prevent parallel computing.

There are also techniques for solids transfered to image
space (ray representation). While many of these mainly help
rendering rather than evaluating the boundary, there are some
that can be applied to intersection purposes (Layered Depth
Image). Unfortunately, when computing these representati-
ons back into meshs many geometric details are destroyed.

Loosing geometric details is also the case for volumetric
approaches. Converting surfaces with sharp corners and
edges into volumetric data (like voxels) and not loosing data
for reconstruction purpose is a challenging task even with

oversampling. This also holds true for a voxel representation,
but voxels on the other hand are easily obtained and robustly
being checked by boolean operations. In addition to that
we need a data structure, distances and volumes which are
calculated easily, properties which are ensured for voxels.
For these reasons our approach uses a voxel based model
which is obtained by boolean operations on the free parts of
the sensor.

C. Optimization method

After having evaluated existing solutions by plugging them
in the objective function of a problem, the solver of an
optimization problem is a strategy to improve solutions until
an optimum of the objective function is reached. To choose a
suitable solver for the specified problem, there are different
characteristics of the objective function Err(e1, . . . , en) that
need to be considered.

At first, we associate the cone of a camera subtracted
from the surveillance area as the ’undetectable’-part of this
camera, depending on the setting e of the camera. Remember
that the undetectable area could be part of the model of
the unmodelled collective. Now imagine the cone rotating
in ’yaw’-direction continuously. One can easily see that the
distance between any given point of the surveillance area and
this cone is not convex in e (as an exception, the chosen point
can be included in the ’undetectable’-part and the distance
is therefore 0 for all e).

The second characteristic to be discussed is the discon-
tinuity of Err(e1, . . . , en) with respect to e. Due to the
voxel based model distances are only evaluated to a finite set
of points. When calculating the distances we need to jump
from one point to the next even if settings are just altered
gradually. Thus, the objective function is discontinuous and
constant in between these discontinuities. Even if we used a
non–voxelbased model, discontinuities would appear due to
the intersections of disconnected parts mentioned in Section
IV-A.

The objective function’s properties complicate the search
for a suitable solver. As elucidated in standard references
on nonlinear optimization like [15], most algorithms take
advantage of a characteristical behavior like convexity, dif-
ferentiability or at least continuity which cannot be guaran-
teed in our case. This applies to all determinisic solvers
for nonlinear programs such as the Sequential Quadratic
Programming, all kinds of local search algorithms (Downhill-
Simplex, Bisection, Newton, Levenberg-Marquard etc.) and
many others. Moreover, the problem cannot be transformed
to a standard form of solvers like branch-and-bound, decom-
positions, cutting planes or outer approximation. This leaves
us with non-deterministic, e.g., stochastic solvers. We have
chosen the method MIDACO which is based on the ant-
colony algorithm and samples solutions randomly where they
appear to be most promising, see [20,21] for details.

D. Complexity

The solver is an iteration which generates a tuple of
settings ei, i = 1, . . . , n (one setting for each camera)
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within each iteration step stochastically, based on knowledge
of previous generations. Given these settings the model,
the distances and the objective function consisting of the
weighted sum given in Equation (8) are evaluated. This
continues until a stopping criteria is fulfilled. In order to
compute the complexity of the method, assume that upon
termination the I-th iteration step has been reached. The
process of obtaining the objective value of Formula (8) is
only implemented in a basic version, whereas for the given
tuple of settings ei all of the H time steps and L appearances
are to be evaluated to test all of the r voxels whether they
are included in the intersection in question. The intersection
test uses all of the fmaxu facets of the unmodelled collective
as well as most of fs static facets and fmaxd dynamic facets.
Summing up these components give us the complexity

O
(
I ·r ·{ n fs + H (n+ L) fmaxd + H L n fmaxu }

)
of the method.

V. EXPERIMENTS

Since we use a stochastical solver on the non-convex
problem of camera configuration, the obtained solutions
(i.e. tuple of settings) most likely differ from one another
although the same objective value (i.e. deviation of distances)
might have been found. Therefore, we ran groups of 20
solver calls with the same parameters to perceive the average
outcome. One examination consists of a few groups of test
runs which only differ in one parameter. We made exami-
nations about changing resolutions, facets, objects, amount
of events, amount of cameras and starting point. As long as
there are no other assumptions the basic setup stated in Tab.
I is used.

modelled part of the
scene dimension/amount
surveillance area S: cuboid 4m× 3m× 3m
voxel resolution: (16× 12× 12)
critical points: all point inside the dynamic collective
static collective: 8 facets at 2 objects
dynamic collective: 24 facets at 6 objects in 2 timesteps
unmodelled collecti-
ve:

24 facets at 6 objects in 3 events (of
distrib.)

camera placement: 6 cameras all over the surveillance area
starting solution: cameras are placed and orientated ran-

domly all over S
stop criteria: maximal time limit 3h

optimization tolerance (diagon.o.voxel)2

TABLE I
BASIC SETUP, WHICH IS USED IF NO OTHER ASSUPTIONS ARE MADE

We additionally assumed that the dynamic collective is
also considered to be the set of critical points. Thus, we
were able to model a robot (dynamical object and critical
points) spinning too fast in direction of a human (unmodelled
object).

Furthermore, Tab. II contains all test parameters and their
ranges. The aim of this section is to summarize all the
examinations defined in Tab. II and, in particular, to answer
the following central questions: Can the desired optimization

modelled part
of the scene alterations
voxel res.: (16 + 4i × 12 + 3i × 12 + 3i) for i =

0, 1, 2, 3, 4, 5

static coll.: 8 + 60i facets for i = 0, . . . , 5 at 2 obj.

6 + 4i facets at 2 + i objects i = 0, . . . , 3

dynamic coll.: 24 + 60i facets i = 0, . . . , 5 at 3 obj./2 timest.

2 + i obj. i = 0, . . . , 3 w. 24 + 4i fac./1 timest.
objects placed randomly

i = 1, . . . , 5 timest. w. 2i obj 8i fac. 3 events

unmodelled
coll.:

24 + 60i facets i = 0, . . . , 5 at 2 obj./3 events

2 + i obj. i = 0, . . . , 3 w. 24 + 4i fac./1 event
objects placed randomly

i = 1, . . . , 5 events w. 2i obj 8i fac. 3 timest.

cameras: i = 3, . . . , 9

restrictions of
the settings’
domain:

cameras placed only at ‘ceilling’

cameras placed only in the ‘upper fourth’

TABLE II
THIS IS AN OVERVIEW OF ALL EXAMINATIONS. AN EXAMINATION

CONSISTS OF A FEW GROUPS OF TEST RUNS, EACH GROUP DIFFERS

ONLY IN ONE PARAMETER.

tolerance be satisfied in time, ie. will the target be appro-
ximated as accuratly as needed? How many iteration cycles
are needed? What is the operating time of one cycle, of each
iteration step and the components of one step? What is the
highest memory consumption?

A. Hardware and Software

We implemented the optimization problem in C++ and
compiled it with ’gcc’ version 4.0.20050901 (prerelease)
optimized with the setting ’-O3’ on SuSE Linux version
10.0. We have used only one of the two cores of an AMD
Opteron(tm) Processor 254 with 2.8 GHz Power(dynamical
from 1GHz - 2.8GHz).Further information can be taken from
Tab. III and IV.

B. Optimization tolerance

As a second stopping criteria next to the three hour time
limit we introduced the optimization tolerance, which is the
maximal objective value a tuple of settings must be mapped
at, for the optimization to terminate. This is desinged to
depend on the length of a voxel’s diagonal. In many cases the
solver was able to satisfy the desired optimization tolerance
in the predefined maximal time. Following exceptions have
exceeded the time limit: We recorded an increasing time
consumption of one iteration step (beyond linear) when
gradually raising the resolution of the voxel discretization.
Due to the time criterion, approaches with a resolutions of
more than 24 × 18 × 18 were terminated before satisfying
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model name: AMD Opteron(tm) Processor 254
cpu MHz: 1004.631
cache size: 1024kB
clflush size: 64
cache alignment: 64

TABLE III
PART OF THE OUTPUT OF $: CAT /PROC/CPUINFO

MemTotal: 4038428kB
MemFree: 886856kB
Buffers: 431016
Cached: 2079360
SwapCached: 0kB
Active: 1431004kB
Inactive: 1138428kB
SwapTotal: 12586916kB
SwapFree: 12586916kB

TABLE IV
PART OF THE OUTPUT OF $: CAT /PROC/MEMINFO

the optimization tolerance (see Fig. 3 and 5). Increasing the
number of dynamic obstacles resulted in too many iteration
steps (over 160000 at most compared to less than 45000
when increasing the amount of static obstacles, cf. Fig. 4)
and thus decreasing the amount of tests the optimization
tolerance was satisfied for, in time, as illustrated in Fig. 6.
In rare cases, a similar outcome was observed if theamount
of randomly placed unmodelled objects is increased.
A combination of both occurrances – the time loss in each
iteration step and the requirement of too many iteration steps
– has been observed for test runs utilizing a small number
of cameras (considering three cameras it was literally im-
possible to compute a satisfactory result, see Fig. 7). In case
of the tests on dynamic obstacles and too few cameras, the
model of the unmodelled collective could not be produced
optimally before the maximal computing time was up. We
experienced similar results for all tests concerning restrictive
domains: None of the tests reached the optimization tolerance
(0.046 m2) but all of them stayed below the value 0.25 m2.
This could be a sign, e.g. that in our test setting six cameras
on the ceilling cannot assimilate the unmodelled collective
close enough by the model.

C. Time consumption

When raising the amount of events, time steps, facets or
objects of any of the collectives we have also recorded a
linearly increasing time consumption for one iteration step.
Out of these, the resolution of voxel discretization and the
amount of dynamic objects appear to be the most critical
ones. Using more cameras, however, resulted in a lower time
loss in one iteration step in our range of camera amounts
(for three cameras we required about 315 ms on average
whereas for nine cameras ca. 170 ms were needed). Of
course, this effect can only last until optimization tolerance is
satisfied (i.e. the model assimilates the unmodelled collective
as accurat as needed), and hence time consumption will slope
up when using a greater amount of cameras.

Without giving a detailed explanation about the way one
iteration step is calculated with our test setting’s camera
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Fig. 3. Scatter plot: With refined resolution the mean (light
grey squares) of the amount of iteration steps (each represented
in a dark grey sqare) in one group was higher. Columns: groups
of 20 iterations with different resolutions;

0 1 2 3 4 5 6
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

amount of objects

am
ou

nt
 o

f i
te

ra
tio

n 
st

ep
s

Fig. 4. Scatter plot: Dynamic obstacles (and perilious points)
are complicating the iteration. Columns: groups of 20 iterations
of additional dynamic objects (red) and static objects (blue)
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Fig. 5. Bar Chart: More refined
resolution than (24 × 18 × 18)
made it impossible to satisfy the
predefined optimization tolerance
in time
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Fig. 6. Bar Chart: The more dyna-
mic objects were spread across the
surveillance area, the less test runs
satisfied the desired optimization
tolerance

network, we would like to state that extending the amount
of facets, cameras and refining the voxel resolution enlarges
time consumption of the intersection test. However, no
intersection test except for those with refined voxel resolution
has exceded 15ms on average. The test runs with 36×27×27
voxel, six cameras and 24 facets have reached an average
of 50ms. After intersecting areas the related voxels need
to be combined to clusters, as to be able to check a free
part’s height or volume (and to compare whether it could be
human). This task took about twice up to four times as long
as the intersection test, a fact which is mainly due to its direct
dependence on the resolution, but also due to the misshaping
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Fig. 8. Bar Chart: The to-
tal time consumption of an incre-
ased amount of cameras sloped
down because the clustering (oran-
ge) weighted more than the actual
intersection test (blue).

of the model (as the clustering seems to depend indirectly
on the amount of cameras). As the period of an iteration step
is mostly filled with intersecting and clustering, Fig. 8 also
shows the decreasing time consumption while using more
cameras.

D. Memory
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Fig. 9. Plot of increasing maximal virtual memory that
was used when refining the resolution of voxels

Measurements of the maximal virtual memory while al-
tering the resulution resulted an ascending graph (beyond
linear), cf. Fig. 9. The highest demand for virtual memory
was measured while testing with the resolution 36×27×27
(a total of 32868 kB). The graphs concerning the maximum
demand for virtal memory versus facets and amount of
cameras are only ascending slowly. Both show a linear slope
of about 350 kB to 450 kB in our range of parameters.

VI. CONCLUSION AND FUTURE PROSPECTS

We managed to build up a camera placement optimization
algorithm that computes location and orientation of a given
amount of cameras inside of a specified surveillance area.
Only randomly placed dynamic obstacles, too few cameras
or too restricted placements and a too refined voxel resolution
are a critical for this method. Apart from that we have suc-
ceeded to minimize the error made by evaluating distances
to the visual hull of a given object up to the optimization
tolerance. In contrast to existing results, we are able to model
a surrounding area with static and moving obstacles without
limiting camera positions or orientations and still evaluate
distances conservatively.

Still, as to assimilate the model and the unknonwn collec-
tive even better, higher resolutions are desired. This leads to
the fact that some improvements of the algorithm still need
to be implemented. Following alterations of the algorithm
may lead to an improved time consumption: First of all, it is
possible to parallelize the iterations of the solver as well as
some intersection tests. But as the amount of iteration steps
of the solver ranged in between about 500 and 160000, the
first goal should be to decrease both the expected number of
iteration steps as well as their variance. Placing the initial
position of the cameras roughly around the surveillance area
and leaving the fine tuning to the algorithm could do the
trick.

Some consideration should also be paid to save many clus-
tering and intersecting processes by leaving out unnecessary
caculations. One of these calculations is the summing up
L ·H addends (the number of appearances times number of
time steps), which all have to be simulated. Time loss will
be minimized if cancelling the evaluation of the sum when
it trespasses the current optimal value. Also, appropriate
data structures like Oct-Trees and BSP-Trees for intersection
and inclusion tests have not been implemented, yet, which
improve the time loss during the intersection test.
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