152,548 research outputs found

    Enzymatic digestion and selective quantification of underivatised [delta]9-tetrahydrocannabinol and cocaine in human hair using gas chromatography-mass spectrometry.

    Get PDF
    Gas chromatography-mass spectrometric (GC-MS) methods for drug analysis routinely employ derivatising reagents. The aim of this paper was to develop a method for the analysis of two recreational drugs, delta-9-tetrahydrocannabinol ([delta](9)-THC) and cocaine in hair samples using GC-MS, without prior derivatisation, thus allowing the sample to be reanalysed in its original form. An enzymatic digestion technique was also developed. Ten hair samples, that were known positive for either [delta](9)-THC and/or cocaine, were enzymatically digested, extracted, and then analysed by GC-MS. All samples measured contained [delta](9)-THC and one sample contained cocaine. The limits of detection (LOD) and quantification (LOQ) were 0.02 ng/mg and 0.05 ng/mg, respectively, for cocaine and 0.015 ng/mg and 0.02 ng/mg, respectively, for [delta](9)-THC. The wide detection window, ease of direct analysis by GC-MS, lower detection limits of underivatised samples, and the stability of drugs using this technique may offer an improved method of analysis

    Development of a method for the screening and quantification of methamphetamine, and its major metabolite amphetamine, in hair using liquid chromatography-tandem mass spectrometry

    Get PDF
    Hair has, over recent years, become widely recognised as an alternate or complementary matrix to blood and urine for drug analysis. Hair analysis offers a wider detection window after drug exposure than blood or urine testing and can provide a long-term history of an individual’s drug use. There are several practical applications of hair analysis for drugs including workplace drug testing, doping control, driving licence re-granting, drug-related deaths and drug-facilitated crimes. As a result hair analysis is currently being performed within various toxicological fields in laboratories around the world. However, before the start of this study no hair analysis for drugs was being performed in South Africa. Therefore, the main aim of this study, as stated in Chapter 1, was to develop a method for the detection and quantification of drugs of abuse, specifically methamphetamine and amphetamine, in hair using High Performance Liquid Chromatography coupled to Mass Spectrometry

    Image Based Hair Segmentation Algorithm for the Application of Automatic Facial Caricature Synthesis

    Get PDF
    Hair is a salient feature in human face region and are one of the important cues for face analysis. Accurate detection and presentation of hair region is one of the key components for automatic synthesis of human facial caricature. In this paper, an automatic hair detection algorithm for the application of automatic synthesis of facial caricature based on a single image is proposed. Firstly, hair regions in training images are labeled manually and then the hair position prior distributions and hair color likelihood distribution function are estimated from these labels efficiently. Secondly, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood. This energy function is further optimized according to graph cuts technique and initial hair region is obtained. Finally, K-means algorithm and image postprocessing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. Experimental results show that the average processing time for each image is about 280 ms and the average hair region detection accuracy is above 90%. The proposed algorithm is applied to a facial caricature synthesis system. Experiments proved that with our proposed hair segmentation algorithm the facial caricatures are vivid and satisfying

    Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale

    Full text link
    The detection of sound begins when energy derived from acoustic stimuli deflects the hair bundles atop hair cells. As hair bundles move, the viscous friction between stereocilia and the surrounding liquid poses a fundamental challenge to the ear's high sensitivity and sharp frequency selectivity. Part of the solution to this problem lies in the active process that uses energy for frequency-selective sound amplification. Here we demonstrate that a complementary part involves the fluid-structure interaction between the liquid within the hair bundle and the stereocilia. Using force measurement on a dynamically scaled model, finite-element analysis, analytical estimation of hydrodynamic forces, stochastic simulation and high-resolution interferometric measurement of hair bundles, we characterize the origin and magnitude of the forces between individual stereocilia during small hair-bundle deflections. We find that the close apposition of stereocilia effectively immobilizes the liquid between them, which reduces the drag and suppresses the relative squeezing but not the sliding mode of stereociliary motion. The obliquely oriented tip links couple the mechanotransduction channels to this least dissipative coherent mode, whereas the elastic horizontal top connectors stabilize the structure, further reducing the drag. As measured from the distortion products associated with channel gating at physiological stimulation amplitudes of tens of nanometres, the balance of forces in a hair bundle permits a relative mode of motion between adjacent stereocilia that encompasses only a fraction of a nanometre. A combination of high-resolution experiments and detailed numerical modelling of fluid-structure interactions reveals the physical principles behind the basic structural features of hair bundles and shows quantitatively how these organelles are adapted to the needs of sensitive mechanotransduction.Comment: 21 pages, including 3 figures. For supplementary information, please see the online version of the article at http://www.nature.com/natur

    Monitoring of adherence to headache treatments by means of hair analysis

    Get PDF
    The aim of this study was to evaluate the potential of hair analysis to monitor medication adherence in headache patients undergoing chronic therapy. For this purpose, the following parameters were analyzed: the detection rate of 23 therapeutic drugs in headache patients' hair, the degree of agreement between the self-reported drug and the drug found in hair, and whether the levels found in hair reflected the drug intake reported by the patients

    Detection of Illicit Drugs and Drug Precursors with Cantilever-Enhanced Photoacoustic Spectroscopy

    Get PDF
    In this study, cantilever-enhanced photoacoustic spectroscopy (CEPAS) was applied in different drug detection schemes. The study was divided into two different applications: trace detection of vaporized drugs and drug precursors in the gas-phase, and detection of cocaine abuse in hair. The main focus, however, was the study of hair samples. In the gas-phase, methyl benzoate, a hydrolysis product of cocaine hydrochloride, and benzyl methyl ketone (BMK), a precursor of amphetamine and methamphetamine were investigated. In the solid-phase, hair samples from cocaine overdose patients were measured and compared to a drug-free reference group. As hair consists mostly of long fibrous proteins generally called keratin, proteins from fingernails and saliva were also studied for comparison. Different measurement setups were applied in this study. Gas measurements were carried out using quantum cascade lasers (QLC) as a source in the photoacoustic detection. Also, an external cavity (EC) design was used for a broader tuning range. Detection limits of 3.4 particles per billion (ppb) for methyl benzoate and 26 ppb for BMK in 0.9 s were achieved with the EC-QCL PAS setup. The achieved detection limits are sufficient for realistic drug detection applications. The measurements from drug overdose patients were carried out using Fourier transform infrared (FTIR) PAS. The drug-containing hair samples and drug-free samples were both measured with the FTIR-PAS setup, and the measured spectra were analyzed statistically with principal component analysis (PCA). The two groups were separated by their spectra with PCA and proper spectral pre-processing. To improve the method, ECQCL measurements of the hair samples, and studies using photoacoustic microsampling techniques, were performed. High quality, high-resolution spectra with a broad tuning range were recorded from a single hair fiber. This broad tuning range of an EC-QCL has not previously been used in the photoacoustic spectroscopy of solids. However, no drug detection studies were performed with the EC-QCL solid-phase setup.Siirretty Doriast

    SharpRazor: Automatic Removal Of Hair And Ruler Marks From Dermoscopy Images

    Get PDF
    Background: The removal of hair and ruler marks is critical in handcrafted image analysis of dermoscopic skin lesions. No other dermoscopic artifacts cause more problems in segmentation and structure detection. Purpose: The aim of the work is to detect both white and black hair, artifacts and finally inpaint correctly the image. Method: We introduce a new algorithm: SharpRazor, to detect hair and ruler marks and remove them from the image. Our multiple-filter approach detects hairs of varying widths within varying backgrounds, while avoiding detection of vessels and bubbles. The proposed algorithm utilizes grayscale plane modification, hair enhancement, segmentation using tri-directional gradients, and multiple filters for hair of varying widths. We develop an alternate entropy-based processing adaptive thresholding method. White or light-colored hair, and ruler marks are detected separately and added to the final hair mask. A classifier removes noise objects. Finally, a new technique of inpainting is presented, and this is utilized to remove the detected object from the lesion image. Results: The proposed algorithm is tested on two datasets, and compares with seven existing methods measuring accuracy, precision, recall, dice, and Jaccard scores. SharpRazor is shown to outperform existing methods. Conclusion: The Shaprazor techniques show the promise to reach the purpose of removing and inpaint both dark and white hair in a wide variety of lesions

    Detection and mapping of Cannabinoids in single hair samples through rapid derivatization- Matrix-Assisted Laser Desorption Ionization Mass Spectrometry

    Get PDF
    The sample preparation method reported in this work has permitted for the first time the application of Matrix Assisted Laser Desorption Ionization Mass Spectrometry Profiling and Imaging (MALDI-MSP and MALDI-MSI) for the detection and mapping of cannabinoids in a single hair sample. MALDI-MSI analysis of hair samples has recently been suggested as an alternative technique to traditional methods of GC-MS and LC-MS due to simpler sample preparation, the ability to detect a narrower time frame of drug use and a reduction in sample amount required. However, despite cannabis being the most commonly used illicit drug worldwide, a MALDI-MS method for the detection and mapping of cannabinoids in a single hair has not been reported. This is probably due to the poor ionization efficiency of the drug and its metabolites and low concentration incorporated into hair. This research showed that the in situ derivatization of cannabinoids through addition of an N-methylpyridium group resulted in improved ionization efficiency, permitting both detection and mapping of Δ9-tetrahydrocannabinol (THC), Cannabinol (CBN), cannabidiol (CBD) and the metabolites 11-nor-9-carboxy-tetrahydrocannabinol (THC-COOH), 11-Hydroxy-delta-9-tetrahydrocannabinol (11-OH-THC) and 11-nor-delta(9)-carboxy-tetrahydrocannabinol glucuronide (THC-COO-glu). Additionally, for the first time an in-source re-arrangement of THC was observed and characterised in this paper thus contributing to new and accurate knowledge in the analysis of this drug by MALDI mass spectrometry

    Development and validation of a liquid chromatography–tandem mass spectrometry (LC–MS/MS) method including 25 novel synthetic opioids in hair and subsequent analysis of a Swiss opioid consumer cohort

    Get PDF
    Major public health concern is raised by the evidence that common drugs like heroin are now frequently laced or replaced with highly potent novel synthetic opioids (NSOs). The objective of this study was to explore the prevalence and patterns of NSOs in a cohort of Swiss opioid users by hair analysis. Hair analysis is considered an ideal tool for retrospective consumption monitoring. Hair samples from 439 opioid users in Zurich were analyzed. Study inclusion required a previous positive hair test result for heroin metabolites, oxycodone, fentanyl, methadone, or tramadol. The samples were extracted with a two‐step extraction procedure, followed by a targeted LC–MS/MS (QTRAP® 6500+) analysis in multiple reaction monitoring mode for a total of 25 NSOs. The method underwent full validation and demonstrated good selectivity and sensitivity with limits of detection (LOD) as low as 0.1 pg/mg. The analyzed sample cohort demonstrated a positivity rate for NSOs of 2.5%, including the following NSOs: butyrylfentanyl, acrylfentanyl, furanylfentanyl, methoxyacetylfentanyl, ocfentanil, U‐47700, isobutyrylfentanyl and benzylfentanyl. Furthermore, we were able to identify specific consumption patterns among drug users. The results indicate that hair analysis is a valuable tool for investigating the prevalence of NSOs in drug‐using populations, which seems to be low in the case of Swiss opioid users. Nevertheless, the results highlight the need for sensitive analytical detection methods in forensic toxicology to identify and monitor substance distribution in different populations
    • …
    corecore