25 research outputs found

    Real-time deep hair matting on mobile devices

    Full text link
    Augmented reality is an emerging technology in many application domains. Among them is the beauty industry, where live virtual try-on of beauty products is of great importance. In this paper, we address the problem of live hair color augmentation. To achieve this goal, hair needs to be segmented quickly and accurately. We show how a modified MobileNet CNN architecture can be used to segment the hair in real-time. Instead of training this network using large amounts of accurate segmentation data, which is difficult to obtain, we use crowd sourced hair segmentation data. While such data is much simpler to obtain, the segmentations there are noisy and coarse. Despite this, we show how our system can produce accurate and fine-detailed hair mattes, while running at over 30 fps on an iPad Pro tablet.Comment: 7 pages, 7 figures, submitted to CRV 201

    Dynamic Face Video Segmentation via Reinforcement Learning

    Full text link
    For real-time semantic video segmentation, most recent works utilised a dynamic framework with a key scheduler to make online key/non-key decisions. Some works used a fixed key scheduling policy, while others proposed adaptive key scheduling methods based on heuristic strategies, both of which may lead to suboptimal global performance. To overcome this limitation, we model the online key decision process in dynamic video segmentation as a deep reinforcement learning problem and learn an efficient and effective scheduling policy from expert information about decision history and from the process of maximising global return. Moreover, we study the application of dynamic video segmentation on face videos, a field that has not been investigated before. By evaluating on the 300VW dataset, we show that the performance of our reinforcement key scheduler outperforms that of various baselines in terms of both effective key selections and running speed. Further results on the Cityscapes dataset demonstrate that our proposed method can also generalise to other scenarios. To the best of our knowledge, this is the first work to use reinforcement learning for online key-frame decision in dynamic video segmentation, and also the first work on its application on face videos.Comment: CVPR 2020. 300VW with segmentation labels is available at: https://github.com/mapleandfire/300VW-Mas

    Classification of Humans into Ayurvedic Prakruti Types using Computer Vision

    Get PDF
    Ayurveda, a 5000 years old Indian medical science, believes that the universe and hence humans are made up of five elements namely ether, fire, water, earth, and air. The three Doshas (Tridosha) Vata, Pitta, and Kapha originated from the combinations of these elements. Every person has a unique combination of Tridosha elements contributing to a person’s ‘Prakruti’. Prakruti governs the physiological and psychological tendencies in all living beings as well as the way they interact with the environment. This balance influences their physiological features like the texture and colour of skin, hair, eyes, length of fingers, the shape of the palm, body frame, strength of digestion and many more as well as the psychological features like their nature (introverted, extroverted, calm, excitable, intense, laidback), and their reaction to stress and diseases. All these features are coded in the constituents at the time of a person’s creation and do not change throughout their lifetime. Ayurvedic doctors analyze the Prakruti of a person either by assessing the physical features manually and/or by examining the nature of their heartbeat (pulse). Based on this analysis, they diagnose, prevent and cure the disease in patients by prescribing precision medicine. This project focuses on identifying Prakruti of a person by analysing his facial features like hair, eyes, nose, lips and skin colour using facial recognition techniques in computer vision. This is the first of its kind research in this problem area that attempts to bring image processing into the domain of Ayurveda

    FIGARO, Hair Detection and Segmentation in the Wild

    Get PDF
    Hair is one of the elements that mostly characterize people appearance. Being able to detect hair in images can be useful in many applications, such as face recognition, gender classification, and video surveillance. To this purpose we propose a novel multi-class image database for hair detection in the wild, called Figaro. We tackle the problem of hair detection without relying on a-priori information related to head shape and location. Without using any human-body part classifier, we first classify image patches into hair vs. non-hair by relying on Histogram of Gradients (HOG) and Linear Ternary Pattern (LTP) texture features in a random forest scheme. Then we obtain results at pixel level by refining classified patches by a graph-based multiple segmentation method. Achieved segmentation accuracy (85%) is comparable to state-of-the-art on less challenging databases

    Image Based Hair Segmentation Algorithm for the Application of Automatic Facial Caricature Synthesis

    Get PDF
    Hair is a salient feature in human face region and are one of the important cues for face analysis. Accurate detection and presentation of hair region is one of the key components for automatic synthesis of human facial caricature. In this paper, an automatic hair detection algorithm for the application of automatic synthesis of facial caricature based on a single image is proposed. Firstly, hair regions in training images are labeled manually and then the hair position prior distributions and hair color likelihood distribution function are estimated from these labels efficiently. Secondly, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood. This energy function is further optimized according to graph cuts technique and initial hair region is obtained. Finally, K-means algorithm and image postprocessing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. Experimental results show that the average processing time for each image is about 280 ms and the average hair region detection accuracy is above 90%. The proposed algorithm is applied to a facial caricature synthesis system. Experiments proved that with our proposed hair segmentation algorithm the facial caricatures are vivid and satisfying

    Soft Biometrics: Globally Coherent Solutions for Hair Segmentation and Style Recognition based on Hierarchical MRFs

    Get PDF
    Markov Random Fields (MRFs) are a populartool in many computer vision problems and faithfully modela broad range of local dependencies. However, rooted in theHammersley-Clifford theorem, they face serious difficulties inenforcing the global coherence of the solutions without using toohigh order cliques that reduce the computational effectiveness ofthe inference phase. Having this problem in mind, we describea multi-layered (hierarchical) architecture for MRFs that isbased exclusively in pairwise connections and typically producesglobally coherent solutions, with 1) one layer working at the local(pixel) level, modelling the interactions between adjacent imagepatches; and 2) a complementary layer working at theobject(hypothesis) level pushing toward globally consistent solutions.During optimization, both layers interact into an equilibriumstate, that not only segments the data, but also classifies it.The proposed MRF architecture is particularly suitable forproblems that deal with biological data (e.g., biometrics), wherethe reasonability of the solutions can be objectively measured.As test case, we considered the problem of hair / facial hairsegmentation and labelling, which are soft biometric labels usefulfor human recognitionin-the-wild. We observed performancelevels close to the state-of-the-art at a much lower computationalcost, both in the segmentation and classification (labelling) tasksinfo:eu-repo/semantics/publishedVersio
    corecore