4,039 research outputs found

    Foundational principles for large scale inference: Illustrations through correlation mining

    Full text link
    When can reliable inference be drawn in the "Big Data" context? This paper presents a framework for answering this fundamental question in the context of correlation mining, with implications for general large scale inference. In large scale data applications like genomics, connectomics, and eco-informatics the dataset is often variable-rich but sample-starved: a regime where the number nn of acquired samples (statistical replicates) is far fewer than the number pp of observed variables (genes, neurons, voxels, or chemical constituents). Much of recent work has focused on understanding the computational complexity of proposed methods for "Big Data." Sample complexity however has received relatively less attention, especially in the setting when the sample size nn is fixed, and the dimension pp grows without bound. To address this gap, we develop a unified statistical framework that explicitly quantifies the sample complexity of various inferential tasks. Sampling regimes can be divided into several categories: 1) the classical asymptotic regime where the variable dimension is fixed and the sample size goes to infinity; 2) the mixed asymptotic regime where both variable dimension and sample size go to infinity at comparable rates; 3) the purely high dimensional asymptotic regime where the variable dimension goes to infinity and the sample size is fixed. Each regime has its niche but only the latter regime applies to exa-scale data dimension. We illustrate this high dimensional framework for the problem of correlation mining, where it is the matrix of pairwise and partial correlations among the variables that are of interest. We demonstrate various regimes of correlation mining based on the unifying perspective of high dimensional learning rates and sample complexity for different structured covariance models and different inference tasks

    Optimal detection of sparse principal components in high dimension

    Full text link
    We perform a finite sample analysis of the detection levels for sparse principal components of a high-dimensional covariance matrix. Our minimax optimal test is based on a sparse eigenvalue statistic. Alas, computing this test is known to be NP-complete in general, and we describe a computationally efficient alternative test using convex relaxations. Our relaxation is also proved to detect sparse principal components at near optimal detection levels, and it performs well on simulated datasets. Moreover, using polynomial time reductions from theoretical computer science, we bring significant evidence that our results cannot be improved, thus revealing an inherent trade off between statistical and computational performance.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1127 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Detecting positive correlations in a multivariate sample

    Full text link
    We consider the problem of testing whether a correlation matrix of a multivariate normal population is the identity matrix. We focus on sparse classes of alternatives where only a few entries are nonzero and, in fact, positive. We derive a general lower bound applicable to various classes and study the performance of some near-optimal tests. We pay special attention to computational feasibility and construct near-optimal tests that can be computed efficiently. Finally, we apply our results to prove new lower bounds for the clique number of high-dimensional random geometric graphs.Comment: Published at http://dx.doi.org/10.3150/13-BEJ565 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Change Detection via Affine and Quadratic Detectors

    Get PDF
    The goal of the paper is to develop a specific application of the convex optimization based hypothesis testing techniques developed in A. Juditsky, A. Nemirovski, "Hypothesis testing via affine detectors," Electronic Journal of Statistics 10:2204--2242, 2016. Namely, we consider the Change Detection problem as follows: given an evolving in time noisy observations of outputs of a discrete-time linear dynamical system, we intend to decide, in a sequential fashion, on the null hypothesis stating that the input to the system is a nuisance, vs. the alternative stating that the input is a "nontrivial signal," with both the nuisances and the nontrivial signals modeled as inputs belonging to finite unions of some given convex sets. Assuming the observation noises zero mean sub-Gaussian, we develop "computation-friendly" sequential decision rules and demonstrate that in our context these rules are provably near-optimal

    The power of sum-of-squares for detecting hidden structures

    Full text link
    We study planted problems---finding hidden structures in random noisy inputs---through the lens of the sum-of-squares semidefinite programming hierarchy (SoS). This family of powerful semidefinite programs has recently yielded many new algorithms for planted problems, often achieving the best known polynomial-time guarantees in terms of accuracy of recovered solutions and robustness to noise. One theme in recent work is the design of spectral algorithms which match the guarantees of SoS algorithms for planted problems. Classical spectral algorithms are often unable to accomplish this: the twist in these new spectral algorithms is the use of spectral structure of matrices whose entries are low-degree polynomials of the input variables. We prove that for a wide class of planted problems, including refuting random constraint satisfaction problems, tensor and sparse PCA, densest-k-subgraph, community detection in stochastic block models, planted clique, and others, eigenvalues of degree-d matrix polynomials are as powerful as SoS semidefinite programs of roughly degree d. For such problems it is therefore always possible to match the guarantees of SoS without solving a large semidefinite program. Using related ideas on SoS algorithms and low-degree matrix polynomials (and inspired by recent work on SoS and the planted clique problem by Barak et al.), we prove new nearly-tight SoS lower bounds for the tensor and sparse principal component analysis problems. Our lower bounds for sparse principal component analysis are the first to suggest that going beyond existing algorithms for this problem may require sub-exponential time
    • …
    corecore