3 research outputs found

    An automated approach to fix buffer overflows

    Get PDF
    Buffer overflows are one of the most common software vulnerabilities that occur when more data is inserted into a buffer than it can hold. Various manual and automated techniques for detecting and fixing specific types of buffer overflow vulnerability have been proposed, but the solution to fix Unicode buffer overflow has not been proposed yet. Public security vulnerability repository e.g., Common Weakness Enumeration (CWE) holds useful articles about software security vulnerabilities. Mitigation strategies listed in CWE may be useful for fixing the specified software security vulnerabilities. This research contributes by developing a prototype that automatically fixes different types of buffer overflows by using the strategies suggested in CWE articles and existing research. A static analysis tool has been used to evaluate the performance of the developed prototype tools. The results suggest that the proposed approach can automatically fix buffer overflows without inducing errors

    IntRepair: Informed Repairing of Integer Overflows

    Full text link
    Integer overflows have threatened software applications for decades. Thus, in this paper, we propose a novel technique to provide automatic repairs of integer overflows in C source code. Our technique, based on static symbolic execution, fuses detection, repair generation and validation. This technique is implemented in a prototype named IntRepair. We applied IntRepair to 2,052C programs (approx. 1 million lines of code) contained in SAMATE's Juliet test suite and 50 synthesized programs that range up to 20KLOC. Our experimental results show that IntRepair is able to effectively detect integer overflows and successfully repair them, while only increasing the source code (LOC) and binary (Kb) size by around 1%, respectively. Further, we present the results of a user study with 30 participants which shows that IntRepair repairs are more than 10x efficient as compared to manually generated code repairsComment: Accepted for publication at the IEEE TSE journal. arXiv admin note: text overlap with arXiv:1710.0372
    corecore