506 research outputs found

    Intelligent Financial Fraud Detection Practices: An Investigation

    Full text link
    Financial fraud is an issue with far reaching consequences in the finance industry, government, corporate sectors, and for ordinary consumers. Increasing dependence on new technologies such as cloud and mobile computing in recent years has compounded the problem. Traditional methods of detection involve extensive use of auditing, where a trained individual manually observes reports or transactions in an attempt to discover fraudulent behaviour. This method is not only time consuming, expensive and inaccurate, but in the age of big data it is also impractical. Not surprisingly, financial institutions have turned to automated processes using statistical and computational methods. This paper presents a comprehensive investigation on financial fraud detection practices using such data mining methods, with a particular focus on computational intelligence-based techniques. Classification of the practices based on key aspects such as detection algorithm used, fraud type investigated, and success rate have been covered. Issues and challenges associated with the current practices and potential future direction of research have also been identified.Comment: Proceedings of the 10th International Conference on Security and Privacy in Communication Networks (SecureComm 2014

    Machine Learning Techniques for Credit Card Fraud Detection

    Get PDF
    The term “fraud”, it always concerned about credit card fraud in our minds. And after the significant increase in the transactions of credit card, the fraud of credit card increased extremely in last years. So the fraud detection should include surveillance of the spending attitude for the person/customer to the determination, avoidance, and detection of unwanted behavior. Because the credit card is the most payment predominant way for the online and regular purchasing, the credit card fraud raises highly. The Fraud detection is not only concerned with capturing of the fraudulent practices, but also, discover it as fast as they can, because the fraud costs millions of dollar business loss and it is rising over time, and that affects greatly the worldwide economy. . In this paper we introduce 14 different techniques of how data mining techniques can be successfully combined to obtain a high fraud coverage with a high or low false rate, the Advantage and The Disadvantages of every technique, and The Data Sets used in the researches by researcher

    Credit Card Fraud Detection Using Asexual Reproduction Optimization

    Full text link
    As the number of credit card users has increased, detecting fraud in this domain has become a vital issue. Previous literature has applied various supervised and unsupervised machine learning methods to find an effective fraud detection system. However, some of these methods require an enormous amount of time to achieve reasonable accuracy. In this paper, an Asexual Reproduction Optimization (ARO) approach was employed, which is a supervised method to detect credit card fraud. ARO refers to a kind of production in which one parent produces some offspring. By applying this method and sampling just from the majority class, the effectiveness of the classification is increased. A comparison to Artificial Immune Systems (AIS), which is one of the best methods implemented on current datasets, has shown that the proposed method is able to remarkably reduce the required training time and at the same time increase the recall that is important in fraud detection problems. The obtained results show that ARO achieves the best cost in a short time, and consequently, it can be considered a real-time fraud detection system

    An Analysis of the Most Used Machine Learning Algorithms for Online Fraud Detection

    Get PDF
    Today illegal activities regarding online financial transactions have become increasingly complex and borderless, resulting in huge financial losses for both sides, customers and organizations. Many techniques have been proposed to fraud prevention and detection in the online environment. However, all of these techniques besides having the same goal of identifying and combating fraudulent online transactions, they come with their own characteristics, advantages and disadvantages. In this context, this paper reviews the existing research done in fraud detection with the aim of identifying algorithms used and analyze each of these algorithms based on certain criteria. To analyze the research studies in the field of fraud detection, the systematic quantitative literature review methodology was applied. Based on the most called machine-learning algorithms in scientific articles and their characteristics, a hierarchical typology is made. Therefore, our paper highlights, in a new way, the most suitable techniques for detecting fraud by combining three selection criteria: accuracy, coverage and costs

    Explainable Artificial Intelligence and Causal Inference based ATM Fraud Detection

    Full text link
    Gaining the trust of customers and providing them empathy are very critical in the financial domain. Frequent occurrence of fraudulent activities affects these two factors. Hence, financial organizations and banks must take utmost care to mitigate them. Among them, ATM fraudulent transaction is a common problem faced by banks. There following are the critical challenges involved in fraud datasets: the dataset is highly imbalanced, the fraud pattern is changing, etc. Owing to the rarity of fraudulent activities, Fraud detection can be formulated as either a binary classification problem or One class classification (OCC). In this study, we handled these techniques on an ATM transactions dataset collected from India. In binary classification, we investigated the effectiveness of various over-sampling techniques, such as the Synthetic Minority Oversampling Technique (SMOTE) and its variants, Generative Adversarial Networks (GAN), to achieve oversampling. Further, we employed various machine learning techniques viz., Naive Bayes (NB), Logistic Regression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting Tree (GBT), Multi-layer perceptron (MLP). GBT outperformed the rest of the models by achieving 0.963 AUC, and DT stands second with 0.958 AUC. DT is the winner if the complexity and interpretability aspects are considered. Among all the oversampling approaches, SMOTE and its variants were observed to perform better. In OCC, IForest attained 0.959 CR, and OCSVM secured second place with 0.947 CR. Further, we incorporated explainable artificial intelligence (XAI) and causal inference (CI) in the fraud detection framework and studied it through various analyses.Comment: 34 pages; 21 Figures; 8 Table

    Comparative Analysis of Different Distributions Dataset by Using Data Mining Techniques on Credit Card Fraud Detection

    Get PDF
    Banks suffer multimillion-dollars losses each year for several reasons, the most important of which is due to credit card fraud. The issue is how to cope with the challenges we face with this kind of fraud. Skewed "class imbalance" is a very important challenge that faces this kind of fraud. Therefore, in this study, we explore four data mining techniques, namely naïve Bayesian (NB),Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Random Forest (RF), on actual credit card transactions from European cardholders. This paper offers four major contributions. First, we used under-sampling to balance the dataset because of the high imbalance class, implying skewed distribution. Second, we applied NB, SVM, KNN, and RF to under-sampled class to classify the transactions into fraudulent and genuine followed by testing the performance measures using a confusion matrix and comparing them. Third, we adopted cross-validation (CV) with 10 folds to test the accuracy of the four models with a standard deviation followed by comparing the results for all our models. Next, we examined these models against the entire dataset (skewed) using the confusion matrix and AUC (Area Under the ROC Curve) ranking measure to conclude the final results to determine which would be the best model for us to use with a particular type of fraud. The results showing the best accuracy for the NB, SVM, KNN and RF classifiers are 97,80%; 97,46%; 98,16% and 98,23%, respectively. The comparative results have been done by using four-division datasets (75:25), (90:10), (66:34) and (80:20) displayed that the RF performs better than NB, SVM, and KNN, and the results when utilizing our proposed models on the entire dataset (skewed), achieved preferable outcomes to the under-sampled dataset

    Development of Deep Learning based Intelligent Approach for Credit Card Fraud Detection

    Get PDF
    Credit card fraud (CCF) has long been a major concern of institutions of financial groups and business partners, and it is also a global interest to researchers due to its growing popularity. In order to predict and detect the CCF, machine learning (ML) has proven to be one of the most promising techniques. But, class inequality is one of the main and recurring challenges when dealing with CCF tasks that hinder model performance. To overcome this challenges, a Deep Learning (DL) techniques are used by the researchers. In this research work, an efficient CCF detection (CCFD) system is developed by proposing a hybrid model called Convolutional Neural Network with Recurrent Neural Network (CNN-RNN). In this model, CNN acts as feature extraction for extracting the valuable information of CCF data and long-term dependency features are studied by RNN model. An imbalance problem is solved by Synthetic Minority Over Sampling Technique (SMOTE) technique. An experiment is conducted on European Dataset to validate the performance of CNN-RNN model with existing CNN and RNN model in terms of major parameters. The results proved that CNN-RNN model achieved 95.83% of precision, where CNN achieved 93.63% of precision and RNN achieved 88.50% of precision

    Identify Credit Tag Scheme Using Enhance And The Bulk Of Votes

    Get PDF
    In financial services, credit card theft is a major concern. Thousands of dollars are lost per year because of credit card theft. Research reports on the analysis of credit card data from the real world are lacking due to problems with secrecy. The paper is used to diagnose credit card fraud using machine learning algorithms. First of all, standard versions are included. Hybrid procedures are then used using AdaBoost and plurality voting methods. A public credit card data collection is used to test the efficiency of the model. An analysis of a financial institution's own credit card records is then conducted. In order to better evaluate the robustness of the algorithms, noise is applied to the samples. The experimental findings show that the plurality vote system has strong rates of accuracy in the detection of cases of fraud on credit cards

    Model-Based Outlier Detection System with Statistical Preprocessing

    Get PDF
    Reliability, lack of error, and security are important improvements to quality of service. Outlier detection is a process of detecting the erroneous parts or abnormal objects in defined populations, and can contribute to secured and error-free services. Outlier detection approaches can be categorized into four types: statistic-based, unsupervised, supervised, and semi-supervised. A model-based outlier detection system with statistical preprocessing is proposed, taking advantage of the statistical approach to preprocess training data and using unsupervised learning to construct the model. The robustness of the proposed system is evaluated using the performance evaluation metrics sum of squared error (SSE) and time to build model (TBM). The proposed system performs better for detecting outliers regardless of the application domain
    corecore