9,055 research outputs found

    Synthesizing Training Data for Object Detection in Indoor Scenes

    Full text link
    Detection of objects in cluttered indoor environments is one of the key enabling functionalities for service robots. The best performing object detection approaches in computer vision exploit deep Convolutional Neural Networks (CNN) to simultaneously detect and categorize the objects of interest in cluttered scenes. Training of such models typically requires large amounts of annotated training data which is time consuming and costly to obtain. In this work we explore the ability of using synthetically generated composite images for training state-of-the-art object detectors, especially for object instance detection. We superimpose 2D images of textured object models into images of real environments at variety of locations and scales. Our experiments evaluate different superimposition strategies ranging from purely image-based blending all the way to depth and semantics informed positioning of the object models into real scenes. We demonstrate the effectiveness of these object detector training strategies on two publicly available datasets, the GMU-Kitchens and the Washington RGB-D Scenes v2. As one observation, augmenting some hand-labeled training data with synthetic examples carefully composed onto scenes yields object detectors with comparable performance to using much more hand-labeled data. Broadly, this work charts new opportunities for training detectors for new objects by exploiting existing object model repositories in either a purely automatic fashion or with only a very small number of human-annotated examples.Comment: Added more experiments and link to project webpag

    ST-GAN: Spatial Transformer Generative Adversarial Networks for Image Compositing

    Full text link
    We address the problem of finding realistic geometric corrections to a foreground object such that it appears natural when composited into a background image. To achieve this, we propose a novel Generative Adversarial Network (GAN) architecture that utilizes Spatial Transformer Networks (STNs) as the generator, which we call Spatial Transformer GANs (ST-GANs). ST-GANs seek image realism by operating in the geometric warp parameter space. In particular, we exploit an iterative STN warping scheme and propose a sequential training strategy that achieves better results compared to naive training of a single generator. One of the key advantages of ST-GAN is its applicability to high-resolution images indirectly since the predicted warp parameters are transferable between reference frames. We demonstrate our approach in two applications: (1) visualizing how indoor furniture (e.g. from product images) might be perceived in a room, (2) hallucinating how accessories like glasses would look when matched with real portraits.Comment: Accepted to CVPR 2018 (website & code: https://chenhsuanlin.bitbucket.io/spatial-transformer-GAN/
    • …
    corecore