11,989 research outputs found

    Preventing SQL Injection through Automatic Query Sanitization with ASSIST

    Full text link
    Web applications are becoming an essential part of our everyday lives. Many of our activities are dependent on the functionality and security of these applications. As the scale of these applications grows, injection vulnerabilities such as SQL injection are major security challenges for developers today. This paper presents the technique of automatic query sanitization to automatically remove SQL injection vulnerabilities in code. In our technique, a combination of static analysis and program transformation are used to automatically instrument web applications with sanitization code. We have implemented this technique in a tool named ASSIST (Automatic and Static SQL Injection Sanitization Tool) for protecting Java-based web applications. Our experimental evaluation showed that our technique is effective against SQL injection vulnerabilities and has a low overhead.Comment: In Proceedings TAV-WEB 2010, arXiv:1009.330

    Escrow: A large-scale web vulnerability assessment tool

    Get PDF
    The reliance on Web applications has increased rapidly over the years. At the same time, the quantity and impact of application security vulnerabilities have grown as well. Amongst these vulnerabilities, SQL Injection has been classified as the most common, dangerous and prevalent web application flaw. In this paper, we propose Escrow, a large-scale SQL Injection detection tool with an exploitation module that is light-weight, fast and platform-independent. Escrow uses a custom search implementation together with a static code analysis module to find potential target web applications. Additionally, it provides a simple to use graphical user interface (GUI) to navigate through a vulnerable remote database. Escrow is implementation-agnostic, i.e. It can perform analysis on any web application regardless of the server-side implementation (PHP, ASP, etc.). Using our tool, we discovered that it is indeed possible to identify and exploit at least 100 databases per 100 minutes, without prior knowledge of their underlying implementation. We observed that for each query sent, we can scan and detect dozens of vulnerable web applications in a short space of time, while providing a means for exploitation. Finally, we provide recommendations for developers to defend against SQL injection and emphasise the need for proactive assessment and defensive coding practices

    Statically detecting message confusions in a multi-protocol setting

    Get PDF
    In a multi-protocol setting, different protocols are concurrently executed, and each principal can participate in more than one. The possibilities of attacks therefore increase, often due to the presence of similar patterns in messages. Messages coming from one protocol can be confused with similar messages coming from another protocol. As a consequence, data of one type may be interpreted as data of another, and it is also possible that the type is the expected one, but the message is addressed to another protocol. In this paper, we shall present an extension of the LySa calculus [7, 4] that decorates encryption with tags including the protocol identifier, the protocol step identifier and the intended types of the encrypted terms. The additional information allows us to find the messages that can be confused and therefore to have hints to reconstruct the attack. We extend accordingly the standard static Control Flow Analysis for LySa, which over-approximates all the possible behaviour of the studied protocols, included the possible message confusions that may occur at run-time. Our analysis has been implemented and successfully applied to small sets of protocols. In particular, we discovered an undocumented family of attacks, that may arise when Bauer-Berson-Feiertag and the Woo-Lam authentication protocols are running in parallel. The implementation complexity of the analysis is low polynomial

    Automated Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces

    Full text link
    Embedded devices are becoming more widespread, interconnected, and web-enabled than ever. However, recent studies showed that these devices are far from being secure. Moreover, many embedded systems rely on web interfaces for user interaction or administration. Unfortunately, web security is known to be difficult, and therefore the web interfaces of embedded systems represent a considerable attack surface. In this paper, we present the first fully automated framework that applies dynamic firmware analysis techniques to achieve, in a scalable manner, automated vulnerability discovery within embedded firmware images. We apply our framework to study the security of embedded web interfaces running in Commercial Off-The-Shelf (COTS) embedded devices, such as routers, DSL/cable modems, VoIP phones, IP/CCTV cameras. We introduce a methodology and implement a scalable framework for discovery of vulnerabilities in embedded web interfaces regardless of the vendor, device, or architecture. To achieve this goal, our framework performs full system emulation to achieve the execution of firmware images in a software-only environment, i.e., without involving any physical embedded devices. Then, we analyze the web interfaces within the firmware using both static and dynamic tools. We also present some interesting case-studies, and discuss the main challenges associated with the dynamic analysis of firmware images and their web interfaces and network services. The observations we make in this paper shed light on an important aspect of embedded devices which was not previously studied at a large scale. We validate our framework by testing it on 1925 firmware images from 54 different vendors. We discover important vulnerabilities in 185 firmware images, affecting nearly a quarter of vendors in our dataset. These experimental results demonstrate the effectiveness of our approach

    Survey on detecting and preventing web application broken access control attacks

    Get PDF
    Web applications are an essential component of the current wide range of digital services proposition including financial and governmental services as well as social networking and communications. Broken access control vulnerabilities pose a huge risk to that echo system because they allow the attacker to circumvent the allocated permissions and rights and perform actions that he is not authorized to perform. This paper gives a broad survey of the current research progress on approaches used to detect access control vulnerabilities exploitations and attacks in web application components. It categorizes these approaches based on their key techniques and compares the different detection methods in addition to evaluating their strengths and weaknesses. We also spotted and elaborated on some exciting research gaps found in the current literature, Finally, the paper summarizes the general detection approaches and suggests potential research directions for the future
    • 

    corecore