61 research outputs found

    Detecting Byzantine Attacks Without Clean Reference

    Full text link
    We consider an amplify-and-forward relay network composed of a source, two relays, and a destination. In this network, the two relays are untrusted in the sense that they may perform Byzantine attacks by forwarding altered symbols to the destination. Note that every symbol received by the destination may be altered, and hence no clean reference observation is available to the destination. For this network, we identify a large family of Byzantine attacks that can be detected in the physical layer. We further investigate how the channel conditions impact the detection against this family of attacks. In particular, we prove that all Byzantine attacks in this family can be detected with asymptotically small miss detection and false alarm probabilities by using a sufficiently large number of channel observations \emph{if and only if} the network satisfies a non-manipulability condition. No pre-shared secret or secret transmission is needed for the detection of these attacks, demonstrating the value of this physical-layer security technique for counteracting Byzantine attacks.Comment: 16 pages, 7 figures, accepted to appear on IEEE Transactions on Information Forensics and Security, July 201

    Physical detection of misbehavior in relay systems with unreliable channel state information

    Get PDF
    We study the detection 1 of misbehavior in a Gaussian relay system, where the source transmits information to the destination with the assistance of an amplify-and-forward relay node subject to unreliable channel state information (CSI). The relay node may be potentially malicious and corrupt the network by forwarding garbled information. In this situation, misleading feedback may take place, since reliable CSI is unavailable at the source and/or the destination. By classifying the action of the relay as detectable or undetectable, we propose a novel approach that is capable of coping with any malicious attack detected and continuing to work effectively in the presence of unreliable CSI. We demonstrate that the detectable class of attacks can be successfully detected with a high probability. Meanwhile, the undetectable class of attacks does not affect the performance improvements that are achievable by cooperative diversity, even though such an attack may fool the proposed detection approach. We also extend the method to deal with the case in which there is no direct link between the source and the destination. The effectiveness of the proposed approach has been validated by numerical results

    Malicious relay node detection with unsupervised learning in amplify-forward cooperative networks

    Get PDF
    This paper presents malicious relay node detection in a cooperative network using unsupervised learning based on the received signal samples over the source to destination (S-D) link at the destination node. We consider the situations in which possible maliciousness of the relay is the regenerative, injection or garbling type attacks over the source signal according to attack modeling in the communication. The proposed approach here for such an attack detection problem is to apply unsupervised machine learning using one-class classifier (OCC) algorithms. Among the algorithms compared, One-Class Support Vector Machines (OSVM) with kernel radial basis function (RBF) has the largest accuracy performance in detecting malicious node attacks with certain types and also detect trustable relay by using specific features of the symbol constellation of the received signal. Results show that we can achieve detection accuracy about 99% with SVM-RBF and k-NN learning algorithms for garbling type relay attacks. The results also encourage that OCC algorithms considered in this study with different feature selections could be effective in detecting other types of relay attacks

    Detecting Encrypted Stepping-Stone Connections

    Full text link

    Neyman-Pearson Decision in Traffic Analysis

    Get PDF
    The increase of encrypted traffic on the Internet may become a problem for network-security applications such as intrusion-detection systems or interfere with forensic investigations. This fact has increased the awareness for traffic analysis, i.e., inferring information from communication patterns instead of its content. Deciding correctly that a known network flow is either the same or part of an observed one can be extremely useful for several network-security applications such as intrusion detection and tracing anonymous connections. In many cases, the flows of interest are relayed through many nodes that reencrypt the flow, making traffic analysis the only possible solution. There exist two well-known techniques to solve this problem: passive traffic analysis and flow watermarking. The former is undetectable but in general has a much worse performance than watermarking, whereas the latter can be detected and modified in such a way that the watermark is destroyed. In the first part of this dissertation we design techniques where the traffic analyst (TA) is one end of an anonymous communication and wants to deanonymize the other host, under this premise that the arrival time of the TA\u27s packets/requests can be predicted with high confidence. This, together with the use of an optimal detector, based on Neyman-Pearson lemma, allow the TA deanonymize the other host with high confidence even with short flows. We start by studying the forensic problem of leaving identifiable traces on the log of a Tor\u27s hidden service, in this case the used predictor comes in the HTTP header. Afterwards, we propose two different methods for locating Tor hidden services, the first one is based on the arrival time of the request cell and the second one uses the number of cells in certain time intervals. In both of these methods, the predictor is based on the round-trip time and in some cases in the position inside its burst, hence this method does not need the TA to have access to the decrypted flow. The second part of this dissertation deals with scenarios where an accurate predictor is not feasible for the TA. This traffic analysis technique is based on correlating the inter-packet delays (IPDs) using a Neyman-Pearson detector. Our method can be used as a passive analysis or as a watermarking technique. This algorithm is first made robust against adversary models that add chaff traffic, split the flows or add random delays. Afterwards, we study this scenario from a game-theoretic point of view, analyzing two different games: the first deals with the identification of independent flows, while the second one decides whether a flow has been watermarked/fingerprinted or not

    The Embedding Capacity of Information Flows Under Renewal Traffic

    Full text link
    Given two independent point processes and a certain rule for matching points between them, what is the fraction of matched points over infinitely long streams? In many application contexts, e.g., secure networking, a meaningful matching rule is that of a maximum causal delay, and the problem is related to embedding a flow of packets in cover traffic such that no traffic analysis can detect it. We study the best undetectable embedding policy and the corresponding maximum flow rate ---that we call the embedding capacity--- under the assumption that the cover traffic can be modeled as arbitrary renewal processes. We find that computing the embedding capacity requires the inversion of very structured linear systems that, for a broad range of renewal models encountered in practice, admits a fully analytical expression in terms of the renewal function of the processes. Our main theoretical contribution is a simple closed form of such relationship. This result enables us to explore properties of the embedding capacity, obtaining closed-form solutions for selected distribution families and a suite of sufficient conditions on the capacity ordering. We evaluate our solution on real network traces, which shows a noticeable match for tight delay constraints. A gap between the predicted and the actual embedding capacities appears for looser constraints, and further investigation reveals that it is caused by inaccuracy of the renewal traffic model rather than of the solution itself.Comment: Sumbitted to IEEE Trans. on Information Theory on March 10, 201

    Wireless Device Authentication Techniques Using Physical-Layer Device Fingerprint

    Get PDF
    Due to the open nature of the radio signal propagation medium, wireless communication is inherently more vulnerable to various attacks than wired communication. Consequently, communication security is always one of the critical concerns in wireless networks. Given that the sophisticated adversaries may cover up their malicious behaviors through impersonation of legitimate devices, reliable wireless authentication is becoming indispensable to prevent such impersonation-based attacks through verification of the claimed identities of wireless devices. Conventional wireless authentication is achieved above the physical layer using upper-layer identities and key-based cryptography. As a result, user authenticity can even be validated for the malicious attackers using compromised security key. Recently, many studies have proven that wireless devices can be authenticated by exploiting unique physical-layer characteristics. Compared to the key-based approach, the possession of such physical-layer characteristics is directly associated with the transceiver\u27s unique radio-frequency hardware and corresponding communication environment, which are extremely difficult to forge in practice. However, the reliability of physical-layer authentication is not always high enough. Due to the popularity of cooperative communications, effective implementation of physical-layer authentication in wireless relay systems is urgently needed. On the other hand, the integration with existing upper-layer authentication protocols still has many challenges, e.g., end-to-end authentication. This dissertation is motivated to develop novel physical-layer authentication techniques in addressing the aforementioned challenges. In achieving enhanced wireless authentication, we first specifically identify the technique challenges in authenticating cooperative amplify-and-forward (AF) relay. Since AF relay only works at the physical layer, all of the existing upper-layer authentication protocols are ineffective in identifying AF relay nodes. To solve this problem, a novel device fingerprint of AF relay consisting of wireless channel gains and in-phase and quadrature imbalances (IQI) is proposed. Using this device fingerprint, satisfactory authentication accuracy is achieved when the signal-to-noise ratio is high enough. Besides, the optimal AF relay identification system is studied to maximize the performance of identifying multiple AF relays in the low signal-to-noise regime and small IQI. The optimal signals for quadrature amplitude modulation and phase shift keying modulations are derived to defend against the repeated access attempts made by some attackers with specific IQIs. Exploring effective authentication enhancement technique is another key objective of this dissertation. Due to the fast variation of channel-based fingerprints as well as the limited range of device-specific fingerprints, the performance of physical-layer authentication is not always reliable. In light of this, the physical-layer authentication is enhanced in two aspects. On the one hand, the device fingerprinting can be strengthened by considering multiple characteristics. The proper characteristics selection strategy, measurement method and optimal weighted combination of the selected characteristics are investigated. On the other hand, the accuracy of fingerprint estimation and differentiation can be improved by exploiting diversity techniques. To be specific, cooperative diversity in the form of involving multiple collaborative receivers is used in differentiating both frequency-dependent and frequency-independent device fingerprints. As a typical combining method of the space diversity techniques, the maximal-ratio combining is also applied in the receiver side to combat the channel degeneration effect and increase the fingerprint-to-noise ratio. Given the inherent weaknesses of the widely utilized upper-layer authentication protocols, it is straightforward to consider physical-layer authentication as an effective complement to reinforce existing authentication schemes. To this end, a cross-layer authentication is designed to seamlessly integrate the physical-layer authentication with existing infrastructures and protocols. The specific problems such as physical-layer key generation as well as the end-to-end authentication in networks are investigated. In addition, the authentication complexity reduction is also studied. Through prediction, pre-sharing and reusing the physical-layer information, the authentication processing time can be significantly shortened
    corecore