556 research outputs found

    Security challenges of small cell as a service in virtualized mobile edge computing environments

    Get PDF
    Research on next-generation 5G wireless networks is currently attracting a lot of attention in both academia and industry. While 5G development and standardization activities are still at their early stage, it is widely acknowledged that 5G systems are going to extensively rely on dense small cell deployments, which would exploit infrastructure and network functions virtualization (NFV), and push the network intelligence towards network edges by embracing the concept of mobile edge computing (MEC). As security will be a fundamental enabling factor of small cell as a service (SCaaS) in 5G networks, we present the most prominent threats and vulnerabilities against a broad range of targets. As far as the related work is concerned, to the best of our knowledge, this paper is the first to investigate security challenges at the intersection of SCaaS, NFV, and MEC. It is also the first paper that proposes a set of criteria to facilitate a clear and effective taxonomy of security challenges of main elements of 5G networks. Our analysis can serve as a staring point towards the development of appropriate 5G security solutions. These will have crucial effect on legal and regulatory frameworks as well as on decisions of businesses, governments, and end-users

    Towards understanding and mitigating attacks leveraging zero-day exploits

    Get PDF
    Zero-day vulnerabilities are unknown and therefore not addressed with the result that they can be exploited by attackers to gain unauthorised system access. In order to understand and mitigate against attacks leveraging zero-days or unknown techniques, it is necessary to study the vulnerabilities, exploits and attacks that make use of them. In recent years there have been a number of leaks publishing such attacks using various methods to exploit vulnerabilities. This research seeks to understand what types of vulnerabilities exist, why and how these are exploited, and how to defend against such attacks by either mitigating the vulnerabilities or the method / process of exploiting them. By moving beyond merely remedying the vulnerabilities to defences that are able to prevent or detect the actions taken by attackers, the security of the information system will be better positioned to deal with future unknown threats. An interesting finding is how attackers exploit moving beyond the observable bounds to circumvent security defences, for example, compromising syslog servers, or going down to lower system rings to gain access. However, defenders can counter this by employing defences that are external to the system preventing attackers from disabling them or removing collected evidence after gaining system access. Attackers are able to defeat air-gaps via the leakage of electromagnetic radiation as well as misdirect attribution by planting false artefacts for forensic analysis and attacking from third party information systems. They analyse the methods of other attackers to learn new techniques. An example of this is the Umbrage project whereby malware is analysed to decide whether it should be implemented as a proof of concept. Another important finding is that attackers respect defence mechanisms such as: remote syslog (e.g. firewall), core dump files, database auditing, and Tripwire (e.g. SlyHeretic). These defences all have the potential to result in the attacker being discovered. Attackers must either negate the defence mechanism or find unprotected targets. Defenders can use technologies such as encryption to defend against interception and man-in-the-middle attacks. They can also employ honeytokens and honeypots to alarm misdirect, slow down and learn from attackers. By employing various tactics defenders are able to increase their chance of detecting and time to react to attacks, even those exploiting hitherto unknown vulnerabilities. To summarize the information presented in this thesis and to show the practical importance thereof, an examination is presented of the NSA's network intrusion of the SWIFT organisation. It shows that the firewalls were exploited with remote code execution zerodays. This attack has a striking parallel in the approach used in the recent VPNFilter malware. If nothing else, the leaks provide information to other actors on how to attack and what to avoid. However, by studying state actors, we can gain insight into what other actors with fewer resources can do in the future

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    Study of Botnets and Their Threats to Internet Security

    Get PDF
    Among all media of communications, Internet is most vulnerable to attacks owing to its public nature and virtually without centralized control. With the growing financial dealings and dependence of businesses on Internet, these attacks have even more increased. Whereas previously hackers would satisfy themselves by breaking into someone’s system, in today\u27s world hackers\u27 work under an organized crime plan to obtain illicit financial gains. Various attacks than include spamming, phishing, click fraud, distributed denial of services, hosting illegal material, key logging, etc. are being carried out by hackers using botnets. In this paper a detailed study of botnets vis-a-vis their creation, propagation, command and control techniques, communication protocols and relay mechanism is presented. The aim of this paper is to gain an insight of security threats that users of Internet are facing from hackers by the use of malicious botnets

    Integration of the Captive Portal paradigm with the 802.1X architecture

    Full text link
    In a scenario where hotspot wireless networks are increasingly being used, and given the amount of sensitive information exchanged on Internet interactions, there is the need to implement security mechanisms that guarantee data confidentiality and integrity in such networks, as well as the authenticity of the hotspot providers. However, many hotspots today use Captive Portals, which rely on authentication through Web pages (thus, an application-level authentication approach) instead of a link-layer approach. The consequence of this is that there is no security in the wireless link to the hotspot (it has to be provided at upper protocol layers), and is cumbersome to manage wireless access profiles (we need special applications or browsers' add-ons to do that). This work exposes the weaknesses of the Captive Portals' paradigm, which does not follow a unique nor standard approach, and describes a solution that intends to suppress them, based on the 802.1X architecture. This solution uses a new EAP-compliant protocol that is able to integrate an HTTP-based registration or authentication with a Captive Portal within the 802.1X authentication framework

    A systematic literature review on Security of Unmanned Aerial Vehicle Systems

    Full text link
    Unmanned aerial vehicles (UAVs) are becoming more common, and their operational range is expanding tremendously, making the security aspect of the inquiry essential. This study does a thorough assessment of the literature to determine the most common cyberattacks and the effects they have on UAV assaults on civilian targets. The STRIDE assault paradigm, the challenge they present, and the proper tools for the attack are used to categorize the cyber dangers discussed in this paper. Spoofing and denial of service assaults are the most prevalent types of UAV cyberattacks and have the best results. No attack style demands the employment of a hard-to-reach gadget, indicating that the security environment currently necessitates improvements to UAV use in civilian applications.Comment: 10 Pages, 4 Figure
    • …
    corecore