3 research outputs found

    Detailed Review on The Denial of Service (DoS) and Distributed Denial of Service (DDoS) Attacks in Software Defined Networks (SDNs) and Defense Strategies

    Get PDF
    The development of Software Defined Networking (SDN) has altered the landscape of computer networking in recent years. Its scalable architecture has become a blueprint for the design of several advanced future networks. To achieve improve and efficient monitoring, control and management capabilities of the network, software defined networks differentiate or decouple the control logic from the data forwarding plane. As a result, logical control is centralized solely in the controller. Due to the centralized nature, SDNs are exposed to several vulnerabilities such as Spoofing, Flooding, and primarily Denial of Service (DoS) and Distributed Denial of Service (DDoS) among other attacks. In effect, the performance of SDN degrades based on these attacks. This paper presents a comprehensive review of several DoS and DDoS defense/mitigation strategies and classifies them into distinct classes with regards to the methodologies employed. Furthermore, suggestions were made to enhance current mitigation strategies accordingly

    Counteracting UDP flooding attacks in SDN

    Get PDF
    Software-defined networking (SDN) is a new networking architecture with a centralized control mechanism. SDN has proven to be successful in improving not only the network performance, but also security. However, centralized control in the SDN architecture is associated with new security vulnerabilities. In particular, user-datagram-protocol (UDP) flooding attacks can be easily launched and cause serious packet-transmission delays, controller-performance loss, and even network shutdown. In response to applications in the Internet of Things (IoT) field, this study considers UDP flooding attacks in SDN and proposes two lightweight countermeasures. The first method sometimes sacrifices address-resolution-protocol (ARP) requests to achieve a high level of security. In the second method, although packets must sometimes be sacrificed when undergoing an attack before starting to defend, the detection of the network state can prevent normal packets from being sacrificed. When blocking a network attack, attacks from the affected port are directly blocked without affecting normal ports. The performance and security of the proposed methods were confirmed by means of extensive experiments. Compared with the situation where no defense is implemented, or similar defense methods are implemented, after simulating a UDP flooding attack, our proposed method performed better in terms of the available bandwidth, centralprocessing-unit (CPU) consumption, and network delay time
    corecore