18,925 research outputs found

    Generation and sampling of quantum states of light in a silicon chip

    Get PDF
    Implementing large instances of quantum algorithms requires the processing of many quantum information carriers in a hardware platform that supports the integration of different components. While established semiconductor fabrication processes can integrate many photonic components, the generation and algorithmic processing of many photons has been a bottleneck in integrated photonics. Here we report the on-chip generation and processing of quantum states of light with up to eight photons in quantum sampling algorithms. Switching between different optical pumping regimes, we implement the Scattershot, Gaussian and standard boson sampling protocols in the same silicon chip, which integrates linear and nonlinear photonic circuitry. We use these results to benchmark a quantum algorithm for calculating molecular vibronic spectra. Our techniques can be readily scaled for the on-chip implementation of specialised quantum algorithms with tens of photons, pointing the way to efficiency advantages over conventional computers

    Multi-Photon Interference and Temporal Distinguishability of Photons

    Full text link
    A number of recent interference experiments involving multiple photons are reviewed. These experiments include generalized photon bunching effects, generalized Hong-Ou-Mandel interference effects and multi-photon interferometry for demonstrations of multi-photon de Broglie wavelength. The multi-photon states used in these experiments are from two pairs of photons in parametric down-conversion. We find that the size of the interference effect in these experiments, characterized by the visibility of interference pattern, is governed by the degree of distinguishability among different pairs of photons. Based on this discovery, we generalize the concept of multi-photon temporal distinguishability and relate it to a number of multi-photon interference effects. Finally, we make an attempt to interpret the coherence theory by the multi-photon interference via the concept of temporal distinguishability of photons.Comment: fixed figures 4,5,

    Spin squeezing of high-spin, spatially extended quantum fields

    Full text link
    Investigations of spin squeezing in ensembles of quantum particles have been limited primarily to a subspace of spin fluctuations and a single spatial mode in high-spin and spatially extended ensembles. Here, we show that a wider range of spin-squeezing is attainable in ensembles of high-spin atoms, characterized by sub-quantum-limited fluctuations in several independent planes of spin-fluctuation observables. Further, considering the quantum dynamics of an f=1f=1 ferromagnetic spinor Bose-Einstein condensate, we demonstrate theoretically that a high degree of spin squeezing is attained in multiple spatial modes of a spatially extended quantum field, and that such squeezing can be extracted from spatially resolved measurements of magnetization and nematicity, i.e.\ the vector and quadrupole magnetic moments, of the quantum gas. Taking into account several experimental limitations, we predict that the variance of the atomic magnetization and nematicity may be reduced as far as 20 dB below the standard quantum limits.Comment: 18 pages, 5 figure
    • …
    corecore