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Implementing large instances of quantum algorithms requires the processing of many quantum
information carriers in a hardware platform that supports the integration of different components.
While established semiconductor fabrication processes can integrate many photonic components,
the generation and algorithmic processing of many photons has been a bottleneck in integrated
photonics. Here we report the on-chip generation and processing of quantum states of light with
up to eight photons in quantum sampling algorithms. Switching between different optical pumping
regimes, we implement the Scattershot, Gaussian and standard boson sampling protocols in the
same silicon chip, which integrates linear and nonlinear photonic circuitry. We use these results to
benchmark a quantum algorithm for calculating molecular vibronic spectra. Our techniques can
be readily scaled for the on-chip implementation of specialised quantum algorithms with tens of
photons, pointing the way to efficiency advantages over conventional computers.

Devices that address customised problems with quan-
tum algorithms are expected to demonstrate an efficiency
advantage over conventional computers. Boson sampling
is a specific model of quantum computing that is suited
to the platform of photonics [1–5] and has been mapped
to the calculation of molecular vibronic spectra [6], sim-
ulation of spin Hamiltonians [7], simulation of molecular
quantum dynamics [8], and the enhancement of classical
optimisation heuristics [9]. Implementing such applica-
tions at a size that challenges conventional computers [10]
demands the integration and high fidelity operation of a
large number of different components, including circuitry
[11–13], detectors [14], filters [15], and photon sources
[16, 17]. The low efficiency of individual spontaneous
photon sources has motivated the adoption of determin-
istic solid-state photon sources [18–21]. However, the
low-loss integration of solid-state sources into photonic
circuitry is an on-going challenge.

Creative approaches to realise boson sampling with
high numbers of photons from spontaneous sources have
seen the design of variant models. In principle, the simul-
taneous optical pumping of a number k of spontaneous
sources that exceeds the number n of desired photons,
boosts the overall rate of photon-pair production com-
binatorially. In Scattershot boson sampling (SBS) [22–
24], one photon from each pair heralds the location of its
partner, such that a Fock state of n photons is prepared
over a random subset of modes. In Gaussian boson sam-
pling (GBS) [25], k single mode optical nonlinearities are
coherently pumped to produce k modes of squeezed (vac-
uum) light, before linear optical processing and n-photon
detection at the output.

The complex photonic circuitry required to scale these
approaches can be addressed with integrated photonics.
Here, by pumping 4 integrated spontaneous four wave
mixing (SFWM) sources with either a single-colour or
a two-colour laser, we select between the Fock state re-
quired for SBS and the squeezed state required for GBS.
Both states of light are routed on-chip to the same lin-
ear optical circuit, which implements a random unitary
operation over 12 waveguides. In the GBS mode of oper-
ation, we benchmark this class of device for calculation
of vibronic spectra. In the limit of the SBS mode of
operation, with n = k = 4, we implement standard bo-
son sampling with 4 heralded photons, generating and
processing 8 photons on-chip. Our analysis shows that
larger versions of our silicon photonic chip, that exploit
the combinatorial boost in photon rate available through
the SBS and GBS protocols, open up the regime of effi-
ciency advantages over conventional computers.

The silicon circuitry and configuration of these exper-
iments can be understood with reference to Fig. 1. Four
SFWM spiral sources are coherently pumped by on-chip
splitting of the near-1550 nm pump laser via multi-mode
interference (MMI) near 50:50 beam-splitters; pump light
is then removed by asymmetric Mach-Zehnder inter-
ferometers (AMZIs). In the dual-wavelength pumping
(GBS) scheme (where photons are generated at the same
signal wavelength) two spectral regions of the tempo-
rally compressed (spectrally broadened) pump are se-
lected and recombined using wavelength-division multi-
plexers (WDMs), before injection to the chip. In the
single-wavelength pumping (SBS) scheme, (where signal
and idler photons are generated at different wavelengths)
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FIG. 1. Silicon photonic chip and experimental configuration. (a) The silicon chip integrates four SFWM spiral photon sources
and twelve continuously coupled waveguides with a network of MMIs and grating couplers; AMZIs separate idler (blue) and
signal (red) photons, and remove pump light (purple). (b) The SBS pumping scheme, where two-mode vacuum squeezing
(TMS) is generated via non-degenerate SFWM, comprises a 1550 nm laser with a bandwidth of 2 nm, and a WDM for
wavelength selection. In the GBS scheme, which relies on single-mode squeezing (SMS) generation via degenerate SFWM, a
pulse compressor increases the bandwidth to 10 nm, WDMs select dual wavelengths, and a delay line synchronises the arrival
of the two pulses. (c) In a given run of the SBS protocol, the detection pattern ~j measured in the idler modes heralds the

modes in which signal photons enter the random walk. The probability to measure a given pattern ~k after the random walk
(described by a unitary matrix T ) is related to the permanent of a sub-matrix of T , whose rows and columns are defined by ~j

and ~k respectively. (d) In a given run of the GBS protocol, four single-mode squeezed states are generated and delivered to the
random walk. The probability for a given measurement pattern in the GBS protocol is given by the Hafnian of sub-matrices
of B, which is a function of both T and the squeezing parameters.

idler photons are separated using a second layer of AMZIs
and out-coupled to a fibre array to herald the presence of
the signal photons. In both regimes, signal photons are
routed to the four central modes of a continuous random
walk, implemented over 12 evanescently coupled waveg-
uides, then out-coupled to the fibre array. Ultra low-
loss out-coupling is implemented by aluminium assisted
apodized grating couplers [26, 27]. An array of 16 super-
conducting nano-wire single-photon detectors (SNSPDs)
with approximately 78% efficiency detect the 4 heralding
modes and the 12 modes from the random walk. (See
Supplementary Materials for details).

The SBS protocol is designed to tackle the inefficiency
that results from implementing standard boson sampling
with spontaneous photon sources [22]. In the original
model of boson sampling [1], a linear optical circuit is
configured to implement a random unitary operation over
m modes. A number n < m of input ports are each pop-
ulated with a single photon, such that n photons undergo
an n×m random operation, before detection with photon
counters. Because the probability amplitude for each n-
photon transition is equal to the permanent of the corre-
sponding transfer matrix, which is in general intractable
to classical computation, an ideal experiment would ef-
ficiently produce samples from an essentially classically

forbidden probability distribution. However, the rate
at which the required n-photon state is produced with
spontaneous sources decreases exponentially with n. As
shown in Fig. 1c, the SBS protocol addresses this inef-
ficiency by pumping k sources that each produce weak
two-mode squeezed light (with n < k ≤ m). One (idler)
photon from each pair is directly detected to identify the
input port of its partner (signal) photon. In compari-
son to the original scheme, the probability to generate
n-photons is boosted by a factor ∝

(
k
n

)
[22, 23].

We implemented the SBS protocol in our silicon chip,
with k = 4 sources, using the single wavelength pumping
scheme shown in Fig. 1b. The experimentally measured
distribution for the n = 3 case (6-photon events) shown
in Fig. 2a, has a mean fidelity [11] with the theoreti-
cal distribution of 92%. Figure 2b shows the measured
difference in photon pair generation rates between the
SBS and standard boson sampling (where only n sources
are pumped) protocols for n = 1 to 3, and for n = 4
where the two regimes converge. As predicted, the n-
photon pair generation rate, is enhanced by a factor of
approximately

(
4
n

)
. In the SBS regime, the two-pair and

three-pair photon rates were measured at 5.8 kHz and
4 Hz, respectively, while the 4-pair (8-photon) rate was
approximately 4 events per hour. The average purity
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FIG. 2. Results for Scattershot boson sampling. (a) Experimental and theoretical distribution for six-photon events, with anti-bunched
states (one photon per detector) on horizontal axis in increasing order {(1, 2, 3), (1, 2, 4), . . . , (10, 11, 12)} from left to right; input states
on the vertical axis are {(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)} from bottom to top. (b) Measured event rates for 2 to 8 photons are shown for
the SBS (black points) and standard (red points) regimes, with a dashed line fit. Inset is the photon rate enhancement for SBS over the
standard boson sampling protocol. (c) Dynamic Bayesian model updating for validation that statistics are from indistinguishable rather
than distinguishable photons for 8-photons (and 6-photons inset).

of the signal photons, estimated via unheralded second-
order correlation measurements [28], was calculated at
86%. (See Supplementary Materials for details).

While fidelity comparisons with theoretical distribu-
tions are not a scalable method of validating boson sam-
pling, an efficient alternative is to compare measurements
against those predicted by a classically tractable and
plausible distribution. As shown in Fig. 2c, we used
Bayesian model comparison [11, 23, 29–31] to validate
our n = 4 (8-photon) statistics against those predicted
by distinguishable photons (the n = 3 case is inset). The
dynamically updated confidence that samples are drawn
from the distribution of indistinguishable particles versus
distinguishable particles reaches higher than 99.9%. (See
Supplementary Materials for details).

In contrast to SBS, the GBS protocol does not project
the input state onto a single Fock state. Rather, the in-
put in GBS is an ensemble of single mode squeezed states,
as shown in Fig. 1d, which further increases the n-photon
detection probability as compared to SBS [25]. After pro-
cessing with linear optical circuitry the probability for a
particular pattern at single photon detectors is given by
a function known as the Hafnian of the relevant transfer
matrix. Similar to the permanent of a matrix, the Haf-
nian is computationally hard to calculate [25, 32, 33].
(See Supplementary Materials for details).

We implemented the GBS protocol using the two-
colour pumping scheme described in Fig. 1b, which gen-
erates weak single-mode squeezed light at each source.
While this spectral selection reduces the pump power be-
low that of the single-colour configuration, we observed
statistics with up to 4 signal photons at 1.1 Hz rate. The
experimentally measured distribution for n = 4 photons,

with one photon per detector (full anti-bunching), shown
in Fig. 3a, has a mean statistical fidelity of 87% with the
ideal theoretical distribution. In validating GBS, a wide
range of alternative models is available where output dis-
tributions arising from general Gaussian input states are
classically tractable. As illustrated in Fig. 3b, we focus
on models that are plausible in our experiment. We vali-
date the ideal input state of 4 single-mode squeezed states
against input with: thermal states, resulting from ex-
cessive loss; coherent states, from unfiltered pump light;
distinguishable single-mode squeeze light, due to spec-
tral mismatch; and two-mode squeezed states, from spu-
rious photons generated at different wavelengths. For
each test, a confidence > 99.9% is reached after ≈ 120
samples for an ideal model using single mode squeezed
states rather than the alternative models. (See Supple-
mentary Materials for details).

An application of GBS is the calculation of molecular
vibronic spectra [6, 34, 35], where programmable linear
optical circuitry, together with squeezed and displaced
light, can approximate probabilities for the vibrational
transition (Frank-Condon factors) between ground and
excited states of a given molecule. To investigate the per-
formance of silicon photonic chips for this application, we
mapped our random walk circuit to a synthetic molecule
and considered the difference C = FQ − FC between the
fidelity of the reconstructed Franck-Condon (FC) profile
FQ and the optimal fidelity obtainable from a classical
strategy FC [34]. While the FC-profile directly recon-
structed from GBS measurements has a fidelity > 99%
to the ideal FC-profile, the low level of squeezing means
that classically-tractable vacuum contributions dominate
and the improvement over a classical strategy is small,
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FIG. 3. Experimental results for GBS. (a) Experimental distribution for 4-photon events shows 87% fidelity with the theoretical distribu-
tion. The horizontal axis labels anti-bunched (one photon per detector) states in increasing order {(1, 2, 3, 4), (1, 2, 3, 5), . . . , (9, 10, 11, 12)}
from left to right. (b) Results of dynamic Bayesian model updating to validate that data is from the ideal GBS model of single mode
squeezed states (SMS GBS, blue lines) against alternative (red lines) states, from left to right: thermal, coherent, distinguishable single-
mode squeezed, and two-mode squeezed states.

(C = 0.4%).

Data post-processing, based on characterised losses
and detection efficiencies, makes it possible to investigate
how the fidelity of the FC-profile depends on the amount
of simulated squeezing, as shown in Fig. 4(inset). For
moderate levels of simulated squeezing, an improvement
of up to C = 9%, corresponding to FQ = 86% (shown in
Fig. 4), is obtained from post-processing. For high val-
ues of simulated squeezing, due to the increased contri-
bution of higher order photon terms, the approach does
not provide any further advantage. (See Supplementary
Materials for details).

Compared to SBS with 4 heralded photons, we ob-

FIG. 4. Reconstructed FC-profile. Reconstructed FC-factors
from GBS data (black) for frequencies ω are contrasted with
theoretical estimates (red) for contributions of up to 8 pho-
tons (> 8 photon contributions are negligible). Inset is the
improvement over optimal classical strategies in the fidelity
of estimating the FC-profile, using simulated squeezing. The
solid line plots cases that simulate squeezing by processing
experimental data, while the dashed line indicates no post-
processing. The red point indicates the specific FC-profile
plotted in the main figure.

served much higher rates for 4-photon GBS using a pump
with lower power, and requiring fewer detectors. This
type of resource saving for GBS over SBS increases as
the size of demonstration increases, though GBS requires
approximately twice as many photons as SBS to demon-
strate efficiency advantages over classical algorithms. In-
creasing the number and purity of integrated photon
sources [36] while decreasing the loss in photonic cir-
cuitry to reduce noise and distinguishability among pho-
tons, leads to similar fidelities when considering the scal-
ing of both the GBS and SBS protocols (e.g. loss acts
to add noise via thermal components to the initial SBS-
two-mode or GBS-single-mode squeezed state resource
states). The maximum number of photons we generated
and processed in these experiments is 8, which is dou-
ble the largest reported to date in integrated photonics.
Based on these results and further analyses (see Sup-
plementary Materials), we estimate that arrays of sev-
eral hundred integrated detectors, possible with current
fabrication technologies [37], would allow fully-integrated
experiments with tens of photons. In the context of cal-
culating molecular transition probabilities, our class of
photonic chip will be useful for reconstructing Franck-
Condon profiles from photonic quantum sampling algo-
rithms, if relevant instances requiring > 20 photon events
are discovered. More generally, for problems that can be
mapped to variant models of boson sampling, such as
interrogating the vibrational dynamics of molecules [8],
our results and analysis show that efficiency advantages
over conventional computers are a realistic prospect with
the platform of integrated photonics.
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Supplementary Materials

Experimental setup details

A detailed schematic of the experimental setup and images of the integrated device and the packaging are shown
in Fig. S1. Single photons were generated and guided in silicon waveguides with a cross-section of 450 nm× 250 nm,
using spontaneous four-wave mixing (SFWM). In the χ(3) SFWM process weak squeezed states are generated as pump
light is transmitted through four 1.4 cm long spirally-shaped waveguides [16], see Fig. 1. In this process photons from
the pump are annihilated while correlated pairs of photons are generated. Each of the 8 asymmetric Mach-Zehnder
interferometer (AMZI) on-chip filters consist of two multi-mode interferometers (MMIs), acting as near-50% beam
splitters, and a thermal phase shifter on the shorter arm of the Mach-Zehnder interferometer. The interferometer is
implemented via a continuous random walk obtained via evanescently coupling 12 waveguides, with the four sources
injecting photons in the four central modes. The distance between near-neighbour waveguides in the random walk is
450 nm and the coupling region has a length of 110µm, ensuring coupling between all 12 waveguides. In order to fine
tune the AMZI filters, the chip was wire-bounded to a PCB to individually address each thermal phase shifter via an
electronic voltage driver with 12 bits resolution (QontrolTM).

To pump the sources, laser pulses were generated via a tunable laser (PriTelTMUltrafast Optical Clock) with a
repetition rate of 500 MHz, emitting 2 nm bandwidth transform limited pulses at near-telecom wavelengths, and
amplified via an Erbium-doped fiber amplifier (EDFA). In the single-wavelength pumping scheme, the emitted pulses
(central wavelength of 1542.9 nm) are filtered off-chip via a wavelength-division multiplexer (WDM) (> 100 dB
extinction, 1.6 nm bandwidth) to remove spurious tails in the pump spectrum (see Fig. S2a), and injected into the
chip via a single mode fiber. Photons are emitted via non-degenerate SFWM at 1549.3 nm (signal wavelength)
and 1536.6 nm (idler wavelength). In the dual-pump regime, the pulses, with a central wavelength of 1549.3 nm are
temporally compressed via a fiber optical pulse compressor (PriTelTMFemtopulse R©), achieving a 10 nm wide spectrum
from which two slices (at 1552.5 nm and 1546.1 nm, each with 1.6 nm bandwidth) were selected via the WDM (see
Fig. S2b). A piezo-controlled optical delay line is used to ensure temporal overlap between the two obtained pulses of
different wavelengths, which are then multiplexed together into a single mode fiber via a second WDM and injected
into the chip. Photons are emitted on-chip via degenerate SFWM at the signal wavelength (1549.3 nm). In both
pumping schemes, fiber polarization controllers were used to maximise the coupling. The input power is monitored
via the use of a 99 : 1 fiber beam-splitter and a photo-diode just before injecting the pump light into the chip.

Photons are collected out of the chip via a 16-channel fiber array, filtered via off-chip single channel fiber filters
(> 100 dB extinction, 0.8 nm bandwidth, 0.3 dB insertion loss on average) to remove spurious pump photons and
enhance the photon indistinguishability, and finally sent to an array of 16 SNSPDs (Photon SpotTM, ∼ 100 Hz dark
counts, ∼ 80% efficiency) for detection. Fast counting logic (Swabian InstrumentsTMGmbH), supporting more than
40 million events per second, was used to collect the single photon detections and process them on the fly.

Chip design, fabrication, and components characterisation

Optical losses, in particular insertion loss of integrated optical components and coupling loss, play a critical role
for on-chip experiments. On our device, in order to decrease the coupling loss, a fully-etched apodized grating
coupler using a photonic crystal is designed [27], and aluminium (Al) mirrors are used below the grating couplers
via a flip-bonding process [27]. The fabrication process starts from a commercial silicon-on-insulator (SOI) wafer
with top silicon thickness of 250 nm and buried oxide layer of 3µm, and proceeds as follows. Firstly, 1.6µm thick
SiO2 is deposited by the plasma-enhanced chemical vapour deposition (PECVD) process on the SOI wafer. After
that, the Al mirror is deposited by electron-beam (ebeam) evaporator, and followed by another thin layer of SiO2

deposition with thickness of 1µm. Following that, the wafer is flip-bonded with Benzocyclobutene (BCB) bonding
process to another silicon carrier wafer. The substrate and buried oxide (BOX) layers of the original SOI wafer are
removed by fast dry-etching and buffered hydrofluoric (BHF) acid chemical-etching, successively, resulting in the
final Al-introduced SOI wafer. After that, the silicon photonic circuit is fabricated by standard ebeam lithography
(EBL) followed by Inductively Coupled Plasma (ICP) etching and ebeam resist stripping. In order to simplify
the fabrication process, grating couplers are designed as fully-etched so that they can be fabricated with the rest
fully-etched silicon nanowires and other photonic components simultaneously. After the photonic part is fabricated,
1.3µm thick SiO2 is deposited by PECVD, followed by polishing process to planarize the surface with approximately
300 nm sacrifice, resulting in a final top SiO2-cladding layer of 1µm. The micro-heaters are patterned afterwards
by another EBL process followed by 100 nm titanium (Ti) deposition and liftoff process. The conducting wires and
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FIG. S1. Experimental setup schematic and images of the device. (a) Schematic of the experimental apparatus. WDM: wavelength-
division multiplexer; PC: polarization controller; EDFA: Erbium-doped fiber amplifier; PM: photo-diode power meter; SMF: single-mode
fiber; DAC: digital-to-analog converter; SNSPDs: superconducting nanowire single-photon detectors. (b) Optical microscope image of the
integrated quantum photonic circuit. On the left the four sources, wrapped together in a spiral shape, can be observed, where photons
are generated after the pump is coherently split by the MMI beam-splitters on the far left side. In the central region are the two layers of
AMZI filters, with the electrical wiring used to control the thermal phase-shifters. On the right the continuous random walk, obtained by
evanescently coupling 12 waveguides for a length of 110 µm, can be observed. The 12 outputs of the random walk and the 4 idler modes
after the filters are routed to an array of 16 grating couplers (output 2), where photons are collected out of the chip via a fiber array
(which was removed while taking this picture in order to show the photonic circuit below it). (c) Top view of the chip packaging, with the
SMF on the left used for coupling pump light into the chip, and the fiber array on the right to collect the output photons.

electrode pads are obtained by standard Ultraviolet (UV) lithography followed by Au/Ti deposition and lift-off process.

Our fabrication platform provide a propagation loss of ∼2 dB/cm measured by the cut-back method for the
fully-etched silicon waveguide with geometry of 450 nm×250 nm. Figure S3 presents the characterisations of
the integrated components. The Al-mirror assisted grating couplers exhibit coupling efficiency of -1.1 dB at the
wavelengths used, with 1 dB coupling bandwidth of 40 nm, as shown in Fig. S3a. The 2×2 MMI structures are used
to implement AMZI filters with a titanium micro-heaters applied on one arm as phase shifters in the AMZIs tunable
filters. In this situation, applying a voltage to the Ti micro-heater results in a power dissipated and heating the
optical waveguide underneath, changing the refractive index in the waveguide and inducing a phase shift. As shown
in Fig. S3b, 3 V heating voltage results in a transmission shift of more than one free-spectral range (FSR). Moreover,
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FIG. S2. Spectral traces of the input pump light for the two different pumping schemes. (a) Spectrum of the input pump light in the
single-wavelength pumping scheme used for SBS. The red opaque line is the measured spectrum emitted by the laser, while the blue line
is the spectrum of the light injected into the chip after passing through the WDM filter. (b) Spectrum of the input pump light in the
dual-wavelength pumping scheme used for GBS. The red opaque line is the measured spectrum obtained after passing the laser pulses
through the optical pulse compressor. The blue line is the spectrum of the light injected into the chip, obtained by selecting two spectral
slices via a first WDM and recombining them into a single fiber using a second WDM.

the insertion loss presented in the inset of Fig. S3b is less than 0.1 dB, indicating less than 0.05 dB insertion loss for
each 2×2 MMI.

Inside the AMZI filters, the phase shifters allow to finely tune the filtered wavelengths. In order to achieve an
accurate tuning, a precise characterisation of the heaters is required. The behaviour of the resistance for all heaters are
presented in Fig. S4a, indicating a consistent behaviour of all heaters. A non-Ohmic behaviour is observed, as is usual
for Ti-based phase-shifters [13, 38, 39], and characterised in order to calculate the voltage required for a given heating
power. The phase-shift as a function of applied heating power is finally characterized for all the heaters, showing a
consistent heating efficiency of all heaters with capability of ∼3π for an applied heating power of approximately 18 mW.

In order to implement 4 ×12 random walk, a 12 ×12 waveguides evanescent coupler is designed. The widths of the
12 waveguides is designed to be 450 nm with coupling gap of 180 nm. The coupling length was chosen to be of 110µm
in order to ensure a coupling between all 12 waveguides, as was preliminarily determined by three-dimensional finite-
difference time-domain (3D FDTD) simulations of the circuit, as reported in Fig. S5a. The 3D FDTD simulations
had only the scope to establish the length of the coupling region for the design, and were thus performed considering
no phase fluctuations between the modes. In practice, random phase fluctuations naturally arise in silicon circuits
due to nano-scale fabrication imperfections, which insert randomness in the unitary evolution of the random walk.
Due to such effects it has been shown that the distribution of the obtained transform matrices converges to the Haar
random distribution exponentially fast with the interaction length [40], making random walks a promising approach
for the implementation of low-loss-interferometers for boson sampling [41]. The transfer matrix of the implemented
4 × 12 continuous random walk, which is the rectangular 4 × 12 submatrix given by the 4 central rows of the total
12× 12 unitary matrix, is shown in Fig. S5b-c, which was preliminarily characterised using standard methods based
on classical and two-photon interference [11, 31, 42, 43].

System efficiency

Optical losses in the experimental set-up and in the integrated device were preliminarily measured. The average
channel efficiency, that is the total loss experienced by each photon from generation to detection, measured via the
coincidence to singles ratio [16] and averaged over all 16 channels used, was measured to be −11.5 dB. Characterisation
of the 16 SNSPDs presented an average efficiency of 0.78 (-1.0 dB). Mean transmission efficiencies through the off-
chip filters and through the fiber connections to the detectors, averaged over the 16 channels used, were measured
to be 0.87 (-0.57 dB) and 0.94 (-0.26 dB) respectively. Measured efficiency for the grating couplers is 0.77 (-1.1
dB) at the wavelengths used, and the transmission for the AMZI on-chip filters is 0.98 (-0.1 dB). Propagation loss
through straight waveguides was estimated via cut-back measurements to be approximately 2 dB cm−1, indicating a



4

1520 1530 1540 1550 1560 1570 1580
-6

-5

-4

-3

-2

-1

0
C

ou
pl

in
g 

ef
fic

ie
nc

y 
(d

B)

Wavelength (nm)

Tr
an

sm
is

si
on

 (d
B)

-50

-40

-30

-20

-10

0

wavelength (nm)
1544 1544.5 1545 1545.5 1546

1.6V
3V

0V

1544.5 1545
-0.2
-0.1

a b

4µm

10µm

FIG. S3. Integrated components characterization. (a) Characterization of the low-loss grating coupler element. (b) AMZI characterization
with different voltage applied on the heater. The scanning electron microscope (SEM) images of the components are also shown in the
corresponding insets.

FIG. S4. Characterization of active components in the AMZI filters. (a) Current to voltage behaviour of the 8 thermal phase-shifters. (b)
Characterisation of the optical phase implemented on each phase-shifter as a function of the thermal power dissipated. Inset: optical fringes
in the AMZI filters used for fine tuning the filtered (destructive interference) and transmitted (constructive interference) wavelengths.

transmission efficiency of 0.995 for the 12-mode random walk implemented. Due to bending losses, the propagation
loss in the spiral waveguides is higher, with average losses of −7.1 dB measured in the 1.4 cm long spirals.

Degenerate and non-degenerate SFWM experimental details

The performance of the individual sources was directly characterised by using the control grating couplers after
the first array of AMZIs (outputs 1 in Fig S1b), configuring the filters accordingly to collect the photons before
the interferometer. Non-degenerate and degenerate SFWM effects were used for the generation of the input states
required for SBS and GBS. The pumping schemes used to excite the processes are reported in Fig. 1b and Fig. S1a.
For both regimes, the measured two-fold coincidences count rates from each single source are reported in Fig. S6a for
different input pump powers (the input pump power is measured off-chip, as shown in S1a). To obtain these curves,
for each source the two-fold coincidences are analysed using the same two channels and detectors, so that channel
efficiencies are the same for all cases and differences in the curves are only due to the different efficiencies between
the sources. The efficiencies of the two channels used, measured as ηi = Ci/CC, where Ci is the singles count rates
on the associated channel and CC are the coincidence counts, are η1 = −9.7 dB and η2 = −8.9 dB.

In the non-degenerate SFWM regime (blue-green curves in Fig. S6a), the coincidence count rates are given in
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FIG. S5. Coupling FDTD simulation and characterisation of the random walk. (a) Simulation of 12×12 coupled waveguides by 3D FDTD
method for quantum Random Walk. In the simulation the waveguide design is the same as for the implemented circuit (waveguide width
of 450 nm, coupling gap of 180 nm, coupling length of 110 µm) and assumes no phase fluctuations between the waveguides. It shows the
evolution of light injected in the first waveguide to investigate the coupling between all waveguides. Amplitudes (b) and phases (c) of the
measured entries of the 4× 12 transfer matrix.

term of the source efficiency (i.e. two-photon emission probability) ε = tanh(ξ)
2
/ cosh2(ξ) as CC = εRη1η2 (see for

example Ref. [16, 44]), where ξ is the squeezing parameter and R is the repetition rate of the laser, from which ε can
be calculated. In SBS measurement conditions (9 dBm input pump power) we obtain for the four non-degenerate

SFWM sources the two-mode squeezing parameters ~ξ = {0.25, 0.21, 0.18, 0.17}.
In the scheme used for the dual-pump regime, the pump is initially broadened in spectrum through a pulse com-

pressor and the two different wavelengths are selected via WDM filters. This is done to avoid synchronisation and
phase locking issues that would arise when using two different pump lasers directly. While this significantly simplifies
the experimental setup, it introduces some issues that have to be taken into account. First, a temporal delay between
the two different frequencies is introduced when passing through the WDM filters, which is compensated via a delay
line (see Fig. 1b and Fig. S1a). The photon count rates dependence on the temporal delay between the pump pulses
with different wavelengths is shown in Fig. S6c. A peak of coincidences is observed when the pulses are overlapped,
that is when photons are emitted via degenerate SFWM. A low level of noise can observed when the two pumps
are not overlapped, with a signal-to-noise ratio of approximately 30, which is mainly due to multi-pair emission of
non-degenerate SFWM photons from the two different pumps. Secondly, by selecting only two frequencies on a broad
pump spectrum, we significantly reduce the power injected into the chip, which in turn reduces the photon rates in
the degenerate SFWM when compared to the non-degenerate SFWM case. In Fig. S6a the photon pair rates (two-fold
coincidences count rates) for each single degenerate SFWM source are reported (red-yellow curves) for different input
pump powers. These were measured as in the non-degenerate SFWM case previously mentioned, with a only difference
that a 50:50 off-chip fiber beam splitter was used to probabilistically separate the two degenerate photons (which suc-
ceeds with a one-half probability). Due to this probabilistic splitting, in the degenerate SFWM regime the coincidence
count rates are given in term of the source efficiency CC = εRη1η2/2 (again, see for example Ref. [16, 44]). As we
are now generating weak single-mode squeezing, the source efficiency (i.e. two-photon emission probability) is given

by ε = tanh(ξ)
2
/2 cosh(ξ). In the GBS measurement conditions (1 dBm total input pump power, measured off-chip)

we obtain for the four degenerate SFWM sources the single-mode squeezing parameters ~ξ = {0.11, 0.09, 0.07, 0.07}.
These squeezing values have been used, together with the characterised unitary of the interferometer, to construct
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FIG. S6. Photon emission and purity via degenerate and non-degenerate SFWM. (a) Photon pair (two-fold) event rates measured at
the detectors. Blue-green lines are for non-degenerate SFWM while red-yellow lines are for degenerate SFWM. In both cases, the source
number and the darkness of the curve are associated: the darkest curve correspond to the first source (top mode in Fig. 1a) and the
brightest to the fourth source (bottom mode in Fig. 1a). (b) Purity of the signal photons emitted with non-degenerate SFWM, obtained
via unheralded g2 measurements, for different input pump powers (measured off-chip). Curve darkness and source number are associated
as in (a). (c) Two-fold count rates emitted in the degenerate SFWM regime for different delays between the pump pulses with different
wavelengths. Error bars are obtained from Poissonian photon statistics.

the matrix B = T [⊕i tanh(ξi)]T
t for GBS. In GBS measurement conditions (1 dBm input power), four-photon events

are observed at approximately a 5 Hz rate.

While the count rate obtained using the implemented dual-wavelength pumping scheme for degenerate SFWM are
greatly reduced by the low pump power injected, we remark that such scheme offers plenty of room for improvement.
For example, the use of two separate pulsed lasers, each tuned at one of the two wavelength desired, would certainly
allow much higher pump powers in the dual-wavelength regime, at the cost of requiring precise synchronisation between
the two lasers.

Photon purity characterisation

In SBS high spectral purity of each signal photon emitted, heralded by the associated idler photon, is important
to achieve a good quality quantum interference between the signal photons. While the good fidelities of the output
distribution in the boson sampling experiments and the validation tests indicate good photon purities, in the non-
degenerate SFWM case, where two-mode squeezed states are generated, a quantitative estimate of the photon purity
can be obtained through unheralded second order correlation (g2) measurements [28]. To perform these measurements,
photons are collected at the output of each source (through the ports labelled as output1 in Fig. S1b), the idler and
signal photons are separated through an off-chip filter and second order correlation measurements are performed on
the signal photon while the idler is not measured. Following Ref. [28], the photon purity P can be estimated from
the obtained second order correlation g2(0) via P = g2(0)− 1. In Fig. S6b the obtained purities for the four different
sources are reported for various values of the input pump power. A decrement of the purity for increasing pump
powers is observed, plausibly due to non-linear noises in the sources and multi-pair emission errors, so that a trade-off
between photon purity and generation rate has to be chosen. In measurement conditions for SBS via non-degenerate
SFWM (9 dBm input pump power) the average purity is approximately 86%.

Bayesian model comparison for boson sampling validation.

Boson sampling validation consists in providing supporting evidence to show that the measured samples are obtained
from a true boson sampler, dictated by quantum interference, rather than from a classically tractable noisy device. In
order to have a consistent verification protocol throughout the work, we have performed the validation via Bayesian
model comparison techniques adapted from previous works [11, 29–31], whose generality allowed to validate all tested
models using the same approach. The procedure is as follows. Suppose that, given a set of data D = {xi}Ni=0

constisting of N output samples xi from the interferometer, we want to verify if the data is more likely to arise from
an ideal model M̄ or from a test model M1. For example, M̄ can represent an ideal implementation of SBS or
GBS, while M1 a classical implementation where all photons are distinguishable. Given the measured set of samples
D, Bayes’ rule offers an immediate way to estimate the confidence in model M̄, that is probability for model M̄ to
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represent the underlying experiment, which is given by:

p(M̄|D) =
p(D|M̄)p0(M̄)

p(D|M̄)p0(M̄) + p(D|M1)p0(M1)

=
1

1 + p(D|M1)p0(M1)
p(D|M̄)p0(M̄)

.

Assuming statistical independence between different events, the probability p(D|M̄) is given by p(D|M̄) =∏N
i=1 p(xi|M̄), where p(xi|M̄) is the probability of obtaining the measured outcome xi according to the ideal model

(dictated by the permanent function for SBS and by the Hafnian in GBS), and similarly for p(D|M1).

Note that, in the case where the detection is restricted to collision-free events, the probabilities p(xi|M̄) have to be
normalised to take it into account, which corresponds to dividing by the sum of the probabilities over all collision-free
events. The reason for this is that the probability of a sample being collision-free differs between the different models;
the normalisation constants are thus in general different.

The probabilities p0(M̄) = p0(M1) = 0.5 represent a prior distribution on the true model, which we here assume to
be uniform to avoid any bias. The confidence p(M1|D) for the adversary modelM1 can be calculated in the same way,
and both confidences are plotted in Fig. 2c for M̄ = SBS and in Fig. 3b for M̄ = GBS as a function of the number
of experimental samples, dynamically updating the confidence as new samples were collected. Note that, has the
protocol requires to estimate probabilities p(xi|M̄), which is not efficient for classical machines, the approach is not
scalable. However, it is general and can be used to validate against any model which allows to calculate probabilities
p(xi|M1).

One could also ask if it would be more convenient to obtain a simultaneous verification from a larger set of m
test models {M̄,M1, . . . ,Mm}, instead of performing multiple two-models comparisons {M̄,Mk}. In such case,
considering a uniform prior distribution between all models, Bayes’ rule gives for the confidence in M̄

1

1 +
p(D|Mk0

)

p(D|M̄)

≥ p(M̄|D) =
1

1 +
∑m
k=1

p(D|Mk)
p(D|M̄)

≥ 1

1 +m
p(D|Mkmax )

p(D|M̄)

,

with kmax = arg maxk p(D|Mk) and k0 ∈ {1, . . . ,m} an arbitrary index value. From the equation above a link
between the multiple comparisons with single models and the simultaneous comparison with multiple models can be
observed. In particular, it can be easily verified that the confidence in M̄ in the simultaneous validation converges to
one if and only if also the confidences in all the multiple two-model comparison validations converge to one.

Scattershot boson sampling

In the standard approach to boson sampling [1], n-photon Fock states are generated by n single photon sources
and injected into the interferometer. However, if each source has a probability ε < 1 to generate a photon, then the
probability that all n sources fire is given by εn, which decreases exponentially with n and prevents any exponential
quantum advantage. The SBS approach has been proposed to avoid these limitations and to increase the complexity
of photonic experiments with realistic non-ideal photon-pair sources, such as those based on spontaneous parametric
down-conversion or SFWM [22, 23]. As shown in Fig. 1c, in the SBS scenario, k > n two-mode squeezing sources
are simultaneously pumped, and for each source a possible detection of an idler photon on the idler mode heralds the
presence of a signal photon in the associated mode. In this way a n photon state is generated whenever a random, but
heralded, set of exactly n between the k sources fire, which can happen with an enhanced probability

(
k
n

)
εn(1− ε)k,

where now ε = tanh(ξ)
2

with ξ the squeezing parameter. In the limit k � n, this probability represents an exponential
combinatorial speed-up in the generation rate with respect to the standard approach, indicating that scalability can
in principle be achieved even in presence of non-deterministic photon sources [22]. As the input state is an heralded
n photons Fock state, output probabilities are measured in the same way as for standard boson sampling, via the
squared permanent of the submatrix associated to the input/output pattern [1, 22].
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FIG. S7. Additional validations of SBS using the row-norm test and the likelihood ratio test. (a) Validation of the boson sampler against a
uniform sampler via the row-norm estimator test by Aaronson and Arkhipov. (b) Validation of the boson sampler against a distinguishable
sampler via the likelihood ratio test. Solid lines are obtained using the experimental SBS data, while dashed lines are obtained by running
the test on simulated data generated from a uniform sampler (a) and a distinguishable sampler (b).

Additional validation tests for scattershot boson sampling

In Fig. 2c validation against a distinguishable sampler are reported for the SBS 6-fold and 8-fold data, using Bayesian
model comparison techniques. The results give supporting evidence for the correct functioning of the experiment. To
give further supporting evidence, we also performed validation protocols based on the likelihood ratio test and the
row-norm estimator test, which are standards in previous experimental works [19–21, 23, 30].

The row-norm estimator test, originally proposed by Aaronson and Arkiphov [45], is designed to validate the
outputs of a boson sampler from those obtained from a trivial uniform distribution. In contrast to the other validation
protocols, this test can be efficiently performed (i.e. is scalable) as it does not require the calculation of ideal output
probabilities. Considering a boson sampling experiment where m output modes and n photons are used, the row-
norm estimator test proceeds as follows. The counter C is initialised to C = 0 and is iteratively updated each time
an input/output sample {~j,~k} (here, ~j = {j1, . . . , jm} and ~k := {k1, . . . , km}) is obtained from the experiment via
calculating the row-norm estimator R~j,~k :=

∏
p

∑
q |T~j,~k|

2, which is efficiently computable [45], and using the updating
rules

Ci+1 =

{
Ci + 1, if R~j,~k > (n/m)m

Ci − 1, if R~j,~k ≤ (n/m)m.

After the data is collected, the protocol concludes that the outcomes are drawn by a boson sampler if the final value
of the counter is C > 0, otherwise it concludes that the outcomes are drawn from a uniform distribution. The results
of the row norm test using 4-fold and 6-fold data are shown in Fig. S7a.

The likelihood ratio test is an alternative approach to distinguish an ideal boson sampler from a device which
operates using distinguishable photons [23, 30], and works as follows. For an ideal sampler and a distinguishable

sampler the probability to observe an output state ~k given the input state ~j is given by pind(~k|~j) = |Perm(T~j,~k)|2

and pdist(~k|~j) = Perm(|T~j,~k|
2), respectively. In the likelihood ratio test, a counter C is initialised to C = 0 and

is iteratively updated each time an input/output sample {~j,~k} is obtained from the experiment via calculating the

estimator L~j,~k = pind(~k|~j)/pdist(~k|~j) and using the updating rules

Ci+1 =



Ci + 2, if L~j,~k ≥ a2

Ci + 1, if 1/a1 ≤ L~j,~k < a2

Ci, if a1 < L~j,~k < 1/a1

Ci − 1, if 1/a2 < L~j,~k ≤ a1

Ci − 2, if L~j,~k ≤ 1/a2.

After the data is collected, the protocol concludes that the outcomes are drawn by a boson sampler if the final value
of the counter is C > 0, otherwise it concludes that the outcomes are given by sampling distinguishable photons. In
our tests, for the control parameters we used a1 = 0.75 and a2 = 2, with validation results from 4-fold and 6-fold
experimental data reported in Fig. S7b.
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Gaussian boson sampling

The task of Gaussian boson sampling consists in generating samples from the photon-counting probability distribu-
tion of linear-optically evolved vacuum squeezed states. That is, we here deal with the probability pgbs(~k) to detect

a pattern of single photons ~k = {k1, . . . , km} (
∑m
i=1 ki = n) at the output of a linear-optical circuit injected with

m vacuum squeezed states ⊗mi=1 |ξi〉. In what follows, we shall characterize each state |ξi〉 in terms of its squeezing
parameter 0 ≤ ξj < 1, while the linear-optical circuit in terms of the unitary matrix U that transforms the input-mode

operators a†j into output mode operators b†k, b†k =
∑
j Ukja

†
j .

In the context of Gaussian boson sampling, it is useful to describe the linear-optically evolved state ⊗mi=1 |ξi〉 via
its Husimi Q-function [46]:

Q(~α) =
1

πm
√

detσQ

exp

[
−1

2
~ααα†σ−1

Q ~ααα

]
,

where ~ααα = (α1, . . . , αm, α
∗
1, . . . , α

∗
m)T, σQ is the 2m× 2m Q-covariance matrix of the evolved state,

σQ =
1

2

[
U 0
0 U∗

]
SS†

[
U† 0
0 UT

]
+ I2m/2, (S1)

S =

[
⊕mj=1 cosh ξj ⊕mj=1 sinh ξj
⊕mj=1 sinh ξj ⊕mj=1 cosh ξj

]
(S2)

and I2m is the 2m× 2m identity matrix. Next, using the formulas [46]

pgbs(~k) = πm
∫
Cm

m∏
i=1

dαiQ(~α)P|~k〉〈~k|(~α), (S3)

P|~k〉〈~k|(~α) =

m∏
i=1

e|αi|
2

(
∂2

∂αi∂αi∗

)ki
δ(αi)δ(α

∗
i ) (S4)

and integrating Eq. (S3) by parts using the generalized Faá di Bruno’s formula for partial derivatives [47], we obtain
the following expression [25, 33],

pgbs(~k) =
|Haf B~k|

2

k1! · · · km!
√

detσQ

. (S5)

Here, B~k is a n× n matrix obtained from the m×m matrix C = U · diag[tanh ξ1, . . . , tanh ξm] · UT by repeating ki
times its ith column and row. In turn, the Hafnian of a 2k × 2k matrix X is defined as [32]

HafX =
∑

µ∈C2K

k∏
j=1

Xµ(2j−1),µ(2j), (S6)

where C2k is the set of canonical permutations on 2k elements, obeying µ(2j − 1) < µ(2j) and µ(2j) < µ[2(j + 1)],
∀j. In fact, the Hafnian can be seen as a generalization of another matrix function, the permanent, which governs
the statistics of indistinguishable bosons and is at the heart of the complexity of standard boson sampling models,

PermX =
∑
µ∈Pk

k∏
j=1

X1,µ(j), (S7)

where summation runs over all permutations of the numbers {1, 2, ..., k}. The computation of both matrix functions,
permanents and Hafnians, is hard for a classical computer. Consequently, since the photon counting probability
distribution pgbs(~k) is given in terms of Hafnians, under certain complexity-theoretic assumption, the task of Gaussian
boson sampling is intractable for a classical computer [25, 33].

Interestingly, scattershot boson sampling can be seen as a special case of Gaussian boson sampling. Namely, one can
interfere pairs of adjacent vacuum squeezed states (input to the Gaussian boson sampler) on a beam splitter and use
one of the arms of emerging two-mode squeezed states for heralding, while sending the other arms into a linear optical
circuit U . This setting, being a special case of Gaussian boson sampling, results in a scattershot scenario [22, 48]. The
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corresponding photon counting probability distribution psbs(n) is now given in terms of permanents of the unitary
matrix U ,

psbs(~k) =
|PermU~k,~j |

2

k1! · · · kM !
. (S8)

Here, U~k,~j is obtained from U by repeating ki times its ith row and ji times its ith column, where the set ~k =

{k1, . . . , km} corresponds to the heralded pattern of single photons input to the circuit U .
We also remark that the linear-optical transformation that we deal with in our experiments has 12 output but 4

input modes and it is therefore given by a 4× 12 unitary transfer matrix T (rather than a 12× 12 square matrix U).
Such a scenario is equivalent to a standard setting with 12 input and output modes described by a 12 × 12 square
matrix U , just that all the eight extra input modes are injected with the vacuum. Effectively, this means that the
corresponding rows of U are deleted and we always deal with its 4× 12 submatrix T obtained selecting the 4 central
rows, which represent the transfer matrix of interest in our experiment.

Test models for validating Gaussian boson sampling

Bayesian approaches allow to validate experimental data by comparing an ideal experimental implementation of
GBS against a general test model for which output probabilities are computable. In this section we describe in more
details the test models used and how output probabilities can be computed and used in the validation tests.

Coherent states: We first consider a set of m input coherent states ⊗mi=1 |αi〉, each of which has the following
representation in the Fock basis,

|αi〉 = e−
|α|2
2

∞∑
ni=0

αni√
ni!
|ni〉 . (S9)

A linear optical circuit U transforms a tensor product of coherent states ⊗mi=1 |αi〉 into another tensor product of
coherent states ⊗mi=1 |βi〉 with amplitudes

βk =

M∑
j=1

Ukjαj . (S10)

In other words, coherent states remain separable while evolved through a linear optical circuit. Thus, the joint
probability pcs(~k) of detecting a pattern of n single photons ~k = {k1, . . . , km}, with an m-mode coherent state
⊗mi=1 |αi〉 at the input, admits a simple product form

pcs(~k) =

m∏
i=1

e−|αi|
2 |αi|2ni
ni!

, (S11)

which is a product of Poisson distributions. Consequently, both sampling from it and computing its elements can be
done efficiently on a classical computer. Although this problem is trivial from a computational point of view, boson
sampling from coherent states comprises a physically relevant test model for validating our GBS experiments. In
the model implemented the input coherent states amplitudes were considered to be uniform between all modes, as is
physically plausible.

Thermal states: Our next test model deals with sampling from linear-optically evolved thermal states. That
is, we consider an M -mode input thermal state ⊗mi=1ρ

th
i . In turn, each state ρth

i can be expressed as an incoherent
mixture of Fock states,

ρth
i = (1− τi)

∞∑
ni=0

τnii |ni〉 〈ni| , (S12)

where τi = 〈ni〉(〈ni〉 + 1) and 〈ni〉 is the average photon number of the state. The probability to detect a set
~k = {k1, . . . , km} of n single photons at the output of a linear-optical circuit U injected with an m-mode thermal
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state ⊗mi=1ρ
th
i then reads

pth(~k) =
1

k1! · · · km!

PermA~k∏m
i=1(1 + 〈ni〉)

, (S13)

where

A = UDU†, (S14)

D = diag {τ1, ..., τm} (S15)

and A~k is obtained from A by repeating ki times its ith column and row.
Interestingly, although the photon-counting probability distribution for input thermal states is given in terms of

matrix permanents (namely, of Hermitian positive semi-definite matrix permanents, since τi ≥ 0, ∀i) sampling from
the probability distribution in Eq. (S13) is classically tractable [49]. Even more, computing its elements can also be
done efficiently for a restricted set of linear-optical transformations U and input states ρth

i [50].

Distinguishable squeezed states: The treatment of GBS with distinguishable squeezed states is analogous to
that of standard boson sampling with distinguishable single photons. Namely, since distinguishable squeezed states do
not interfere with each other, the corresponding GBS experiment with k distinguishable squeezed states is equivalent

to a set of k experiments where a single squeezed state
∣∣∣ξ̃j〉 := |0, . . . , 0, ξj , 0, . . . , 0〉 evolves according to the m-mode

linear-optical transformation U (j = 1, . . . , k). In turn, the photon-counting statistics at its output is obtained by
accumulating photon detection events from these experiments. To find the corresponding probability distribution, we

first write down the Q-covariance matrix of the evolved states
∣∣∣ξ̃i〉:

σ̃
(j)
Q =

1

2

[
U 0
0 U∗

]
S̃jS̃

†
j

[
U† 0
0 UT

]
+ I2m/2 (S16)

where

S̃j =

[
⊕mi=1(1 + δj,i cosh ξj) ⊕mi=1δj,i sinh ξj
⊕mi=1δj,i sinh ξj ⊕mi=1(1 + δj,i cosh ξj)

]
. (S17)

Next, in order to find the probability pdss(~k) of detecting a pattern ~k = {k1, . . . , km} of n single photons at the
output of k distinguishable squeezed states distributed among m modes, one has to consider all the possible detection

events upon the evolved states
∣∣∣ξ̃j〉, ∀j, that yield the given pattern ~k. Since the corresponding expression is rather

bulky for arbitrary n, k and m, we present here the expression relevant to our experimental setting only. That is,
we assume that four distinguishable squeezed states are injected in the ath, bth, cth and dth mode of a 12-mode

linear-optical circuit. The probability p
(4)
dss(

~k) of detecting n = 4 single photons in the qth, rth, sth and tth modes
(no more than two photons per mode) at its output then reads

p
(4)
dss(

~k) =
1∏

f∈{a,b,c,d}

√
det σ̃

(f)
Q

 ∑
{i,j}∈G

[
p

(i)
l1,l2

p
(j)
l3,l4

(1 + δl1,l2)(1 + δl3,l4)
+

p
(i)
l1,l3

p
(j)
l2,l4

(1 + δl1,l3)(1 + δl2,l4)
+

p
(i)
l1l4

p
(j)
l2,l3

(1 + δl1,l4)(1 + δl2,l3)

]

+
∑

i∈{a,b,c,d}

∣∣∣Haf C̃ ′i

∣∣∣2
 . (S18)

Here, G is the set of all six distinct pairs of input mode numbers, i.e., G = [{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}],
l is the list of mode numbers where photons were detected, l = {q, r, s, t}, C̃ ′i is obtained from the 12 × 12 matrix

C̃i = U · diag[0, . . . , tanh ξi, . . . , 0] · UT by keeping its qth, rth, sth and tth rows and columns and p
(j)
ij =

∣∣∣C̃(j)
ij

∣∣∣2.

If two photons were detected at a given mode, the corresponding mode number is repeated twice in the list l. For
instance, if two photons were detected in the rth mode, the list l reads l = {q, r, r, t}. Note also that the first line
in Eq. (S18) corresponds to events where a pair of squeezed states produced a detection of two photons, while the
second line corresponds to events where a single squeezed state produced a detection of four photons.

We also remark that although the computation of each element of the photon-counting probability distribution
pdss(~k) is hard, sampling from it is classically tractable, analogous to the case of standard boson sampling with
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FIG. S8. Equivalence between a sampler with two-mode squeezed states at the input and a circuit with single-mode input squeezed
states. (a) Photonic circuit in of a Gaussian boson sampler using TMS at the input. (b) Equivalent circuit with SMS at the input, where
each TMS source is substituted with two SMS sources that are interfered into a beam-splitter after the bottom source has accumulated a
π/2 phase.

distinguishable single-photons (see, e.g., Ref. [45]).

Two-mode squeezed states: To treat the case where the input states are two-mode squeezed states instead of
single-mode ones, we can make use of the analogy between the photonic circuits represented in Fig. S8a and Fig. S8b.
Similar connections between sampling protocols using TMS and SMS have already been highlighted in previous
works, for example in Ref. [33] it was used to relate SBS and GBS. The idea is to note that m two-mode squeezers
can be obtained from 2m single-mode squeezers combined pairwise into phase shifters and beam-splitters, as shown
in Fig. S8b. As photons in different modes of the two-mode squeezers would not interfere in the interferometer, we
can separate all the m top output modes of the beam-splitters and the m bottom output modes, and send them into
separate but equal interferometers T . Suppose that single-photon detection at the outputs of both interferometers,
obtaining patterns ~h and ~k in the top and bottom m output modes, respectively (note that

∑
i hi =

∑
i ki = n/2 must

hold, where n is the total number of photons). This would correspond to a detection patter ~x = ~k +~h in the original
TMS sampler. The output probabilities of the TMS sampler ptms(~x) can then be calculated from the probabilities of

the analogue SMS Gaussian boson sampler ptms(~h,~k) as

ptms(~x) =
∑
~h,~k:

~x=~h+~k,∑
i hi=

∑
i ki=n/2

pgbs(~h,~k), (S19)

where pgbs(~h,~k) is the calculated probability of obtaining patterns ~h and ~k in the top and bottom m output modes of

the scheme in Fig. S8b. The probability pgbs(~h,~k) is obtained using the total transfer matrix Tgbs = (T ⊕T ) ·Tbs ·Tps

which includes the matrices associated to the array of phase shifters Tps = U⊕mps and beam-splitters Tbs = U⊕mbs ,
where

Ups =

[
1 0
0 i

]
, Ubs =

[
1 1
−1 1

]
/
√

2. (S20)

We remark that, although sampling from TMS input states deviates from an ideal implementation of GBS, it still
represents a task which is hard classically, as it can be mapped into an analogous GBS problem. Therefore, rather
then a validation on the computational complexity of the sampler, the test performed should here be interpreted as
supporting evidence for the correct experimental implementation of the protocol.

Uniform distribution: As for standard boson sampling, the output probabilities for a uniform sampler are simply
given by puni(~k) = 1/nconf where nconf is the total number of possible output patterns such that

∑m
i=1 ki = n. For

completeness, validation results for GBS data against a uniform sampler are reported in Fig. S9.
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FIG. S9. Validation of GBS against a uniform sampler. The validation of the experiment against a sampler drawing from a uniform
distribution is performed using experimental collision-free data and Bayesian model comparison techniques.

FIG. S10. Detection schematic for pseudo photon number resolving measurements and GBS validation. (a) Pseudo number resolving
is obtained by probabilistically splitting the incoming photons via on-fiber 1 × 2 beam splitters and using SNSPDs and the outputs. (b)
Validation of GBS using the data measured with pseudo photon number detection and Bayesian validation methods. Blue-purple curves
are associated to the ideal GBS model, while red-yellow dashed curves to test models. In the order from darker to lighter colours, the
curves represent validation against test models with input thermal, coherent, distinguishable SMS and TMS states.

Gaussian boson sampling with pseudo photon number resolving detection

To study GBS in a non-collision-free regime (i.e. including cases where more than one photon per output mode
is possible), we additionally implemented GBS in a configuration where pseudo number resolving photodection was
performed, where up to 2 photons could be probabilistically resolved in the output modes. This can be achieved with
a slight modification at the detection apparatus. In particular, inserting 50:50 fiber beam splitters on the output
fibers and detecting the outputs with the SNSPDs, as pictured in Fig. S10a. In this way, if two photons are present
in a single output mode, they can be probabilistically split at the beam splitter with a probability 1/2, and the
simultaneous detection of both the associated detectors identifies the presence of two photons on the mode. The cases
where a single photon is on a mode are not affected, as it will be detected by either one of the two SNSPDs associated
to his mode.

Results for the validation tests performed in the non-collision-free regime are reported in Fig. S10b. As for the
collision-free case reported in the main text, the validation are performed against hypothetical models of the exper-
iment where thermal states, coherent states, distinguishable SMS and TMS states are used at the input instead of
ideal SMS states, using Bayesian model comparison techniques. In all tests, we obtain high confidence in the ideal
model after 125 events.
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Noises in Gaussian boson sampling with integrated SFWM sources

We briefly discuss here some noise effects that may arise when performing GBS in an integrated implementation
based on SFWM waveguide or ring-resonator sources [16, 44].

The first type of noise we study is the one inserted from losses before the circuit. For example, losses due to cross-
two-photon absorption, in addition to transmission losses, are known to limit the heralding efficiency of integrated
non-linear sources [51]. While in the standard approach to boson sampling, where single-photon sources are used
and the inputs are Fock photon number states, such losses can be simply accounted into a reduced efficiency of the
sources [19–21], in GBS the situation is different: losses change the input Gaussian state. In fact, under the action
of losses a single-mode squeezed state transforms towards a thermal state, inserting noises in the output distribution.
Note that such effect is present also in SBS implementations based on parametric non-linear sources [11, 23, 30, 31],
where it is typically referred to as multi-pair emission noise. The GBS formalism allows to describe and study it
analytically.

Considering a GBS experiment where n photons are emitted by k SMS sources and injected into the interferometer,
the presence of losses before the interferometer can be described as shown in Fig S11a. Losses are modelled by
combining each of the k sources with an ancillary vacuum mode through a beam-splitter with transmission 0 ≤ η ≤ 1,
and tracing out the (undetected) ancillary modes before sending the signal ones into the interferometer. Considering
for simplicity uniform squeezing and losses through the modes, this procedure can be described analytically in the
following way. First, we label the odd modes as the signal ones, i.e. with SMS sources on them, and the even
ones as the auxiliary modes initialized in the vacuum state, so that the 2k squeezing parameters are given by ~ξ′ =
{ξ1, 0, ξ2, 0, . . . , ξk−1, 0, ξk, 0}. Following Eq. (S16) and Eq. (S17), the covariance matrix of the state after the action
of the losses, modelled by the beam-splitters with transmission η, is given by:

σ(2k) =
1

2

[
Ubs 0
0 U∗bs

]
S2kS

†
2k

[
U†bs 0
0 UT

bs

]
(S21)

where

S2k =

[
⊕2k
j=1 cosh ξ′j ⊕2k

j=1 sinh ξ′j
⊕2k
j=1 sinh ξ′j ⊕2k

j=1 cosh ξ′j

]
, Ubs =

[ √
η

√
1− η

−
√

1− η √
η

]⊕2k

. (S22)

The Gaussian state injected in the interferometer is obtained by tracing out the ancillary modes. Its covariance
matrix σ is therefore simply given by deleting the even rows and columns from σ(2k) in Eq. (S21). The output
probabilities can finally be calculated via the Hafnian of the matrices obtained as described in Ref. [25, 33] and in
previous supplementary sections.

In Fig. S11b-c the mean statistical fidelities of the output 4-photon and 6-photon distributions for a 12 modes
interferometer are reported as a function of the losses, for various values of squeezing and number of sources used.
For a systems of this size, the protocol appears to have a good resilience to this type of noise. As expected, the noise
becomes more significant increasing the system size (number of photons and sources) and the squeezing.

The second type of noise we discuss is the noise due two spurious emission of photons via non-degenerate SFWM.
This is relevant in our scheme based on SFWM as, using a dual-wavelength pump scheme in order to obtain SMS
via degenerate SFWM, non-degenerate SFWM emission can be obtained at each sources by both pumps at different
wavelengths. Effectively, each source comprises a single-mode squeezer and also two two-mode squeezers, one per
pump. The presence of TMS induces noise in the system. For example, consider the case when we observe two
photons in the signal modes (were only the signal wavelength is selected). In the ideal case these would be generated
from the first term of a SMS state, but there is also a chance that these two photons could incorrectly originate
from two-pairs of non-degenerate pairs emitted via two-mode squeezing, where only the two photons in the signal
wavelengths are observed while the other two photons are discarded. Such event would then give an erroneous sample.

The signal-to-noise ratio (SNR) between the correct events originated by ideal SMS and the noisy events where at
least a photon pair is originated via spurious TMS can be quantified. For the ideal case, the probability of generating
n pairs of photons (2n total signal photons) from k SMS sources with squeezing ξ is given by the negative binomial
distribution (see for example Ref. [25, 33]):

p(k,ξ)
sms (2n) =

(
k/2 + n− 1

n

)
sechk(ξ) tanh2n(ξ). (S23)
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FIG. S11. Effect of losses before the interferometer on the output GBS distribution. (a) Simulation of losses at the input via the
use of ancillary vacuum modes coupled to the signal modes via beam-splitters. The transmittivity of the beam-splitters η controls the
amount of losses (1 − η) simulated. The Gaussian state injected into the interferometer is described by the covariance matrix of the
state after the beam-splitters tracing out the row and columns associated to the ancillary modes, and output statistics are calculated
using GBS techniques. (b) and (c), Simulated mean statistical fidelities of the distributions arising from lossy implementations with the
ideal distribution obtained from an ideal device. The distributions for four photons (b) and six photons (c) interfering in a 12 mode
interferometer are considered for different values of squeezing. Solid lines are for the case where 4 sources are used, while for the dashed
lines 12 sources are used.

FIG. S12. Signal-to-noise ratio for GBS events performed with SFWM. The SNR, calculated via Eq. (S28), is plotted in a logarithmic
scale as a function of total photon number and squeezing values. The SNR = 1 (Log10(SNR) = 0) contour is reported via the black dashed
line. Number of sources is fixed to k = 2N , with N the number of photon pairs (2N total photons), which saturates the complexity for
GBS.

The probability of obtaining n signal photons (n pairs) via k TMS sources with squeezing ξ is instead given by (see
for example Ref. [25, 33]):

p
(k,ξ)
tms (n) =

(
k

n

)
sech2k(ξ) tanh2n(ξ). (S24)

Suppose now performing GBS with k sources based on SFWM, that is k SMS sources and 2k TMS sources with
same squeezing ξ, and suppose we observe a 2n photons event. We consider it a correct event if and only if all photons
originate from SMS, while all other cases are considered as noise. The probability of observing a noisy event is then
given by:
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p
(k,ξ)
× (2n) =

n∑
m=1

p(k,ξ)
sms (2(n−m))p

(2k,ξ)
tms (2m) (S25)

= sech5k(ξ) tanh2n(ξ)

n∑
m=1

(
k/2 + n−m− 1

n−m

)(
2k

2m

)
tanh2m(ξ). (S26)

The SNR is then finally given by:

SNR(2n, k, ξ) =
p

(k,ξ)
sms (2n)

p
(k,ξ)
× (2n)

(S27)

= cosh4k(ξ)

(
k/2+n−1

n

)∑n
m=1

(
k/2+n−m−1

n−m
)(

2k
2m

)
tanh2m(ξ)

. (S28)

The SNR as a function of photons and squeezing is plotted in Fig. S12, where we take k = 2n (which saturates
the complexity for GBS [25]). It can be observed that for low levels of squeezing the SNR decreases rapidly with the
number of photons. However, for higher squeezing the cosh4k(ξ) factor in Eq. (S28) becomes dominant and a good
SNR is recovered.

To reduce this type of noise, different methods can be adopted. First, one may consider to detect the idler photons
emitted in the TMS case, instead of discarding them, via filtering them before the interferometer and detecting the
idler modes, in the same way as in the scattershot approach. If any idler photon is detected in addition to the photons
in the signal modes, then the event is discarded. In this way the SNR can be in principle arbitrarily high (though
in practice it would be limited by the loss). One other option would be to consider an hybrid scheme between GBS
and SBS, where detecting the idler photons would herald the injection of a non-Gaussian, but known, state into the
interferometer, while if no idler is detected then the event is treated in the standard GBS approach. Such scheme
would be more suitable for integrated approaches based on SFWM, increasing the count rate by not erasing all the
unideal events, and is likely to be of the same complexity of GBS.

Franck-Condon profiles

The analogy between photons distributed among optical modes and molecular phonons among vibrational modes
comprises a platform for photonic quantum simulations of complex molecular dynamics [6, 8, 34]. As we detail in
this section, based on such an analogy, a setting similar to Gaussian boson sampling can be used, e.g., to simulate an
arbitrary molecular Franck-Condon (FC) profile [6]. The latter corresponds to the molecular vibrational transition
profile within the harmonic approximation and the assumption of a coordinate-independent electronic transition
moment.

According to the Franck-Condon principle [52, 53], the probability of a vibrational transition from an initial state

|~j〉, which we assume to be the ground state |~j〉 = |0, . . . , 0〉, to a final state |~k〉 = |k1, . . . , km〉 is given as

pFC(~k) = |〈~k|UDok|0, . . . , 0〉|2 (S29)

where m is the number of vibrational modes and UDok is the Doktorov transformation [54]. The latter consists of
linear transformations that conserve the number of excitations, mode displacement and single-mode squeezing,

UDok = UL

[
⊗mj=1S(ξj)

]
U†R [⊗mi=1D(αi)] . (S30)

Here, D(αi) = exp
(
αiai + α∗i a

†
i

)
and S(ξi) = exp

[
ξi/2

(
a2
i + a†

2

i

)]
denote, respectively, the displacement and

squeezing operators acting on the ith vibrational mode (αi and ξi are displacement and squeezing parameters), UL

and UR are linear transformations and a†i (ai) are the bosonic creation (annihilation) operators.
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The displacement and squeezing parameters, as well as linear transformations UL and UR are defined via the initial
and final molecular configurations. Namely, these parameters can be found from the following expressions

αi =
1√
2

m∑
j=1

J−1
ij δj , J = Ω′UDΩ−1, δi =

m∑
j=1

Ω′ijdj (S31)

Ω′ = diag(
√
ω′1, . . . ,

√
ω′m), Ω = diag(

√
ω1, . . . ,

√
ωm). (S32)

Here, ωi and ω′i are the harmonic angular frequencies of the initial and final electronic states. In turn, UD and di
are, respectively, the Duschinsky rotation matrix and displacements along the normal coordinates qi (associated with
mode operator ai), which are responsible for molecular structural changes induced by an electronic transition. These
structural changes or, in other words, normal coordinate transformations can be written as [55]

qi →
m∑
j=1

U
[ij]
D qj + di, (S33)

where U
[ij]
D denote matrix elements of UD.

In turn, squeezing parameters ξi and linear transformations UL and UR are obtained from the singular value
decomposition of the matrix J ,

J = ULΣUT
R . (S34)

That is, UL and U†R are the state-space representations of UL and UT
R (T denotes matrix transposition), while squeezing

parameters ξi are the natural logarithms of the diagonal elements of the matrix Σ, i.e., of the singular eigenvalues of
J .

Having defined all the quantities appearing in Eq. (S29), we can now interpret pFC(~k) (also known as an FC factor)

as the probability of detecting an excitation pattern ~k at the output of a linearly evolved squeezed coherent state
|Ψ〉 :=

[
⊗mj=1S(ξj)

]
U†R [⊗mi=1D(αi)] |0, . . . , 0〉, i.e.,

pFC(~k) =
∣∣∣〈~k|UL|Ψ〉

∣∣∣2 . (S35)

Finally, the molecular FC profile at a given frequency ω reads

FCP(ω) =

∞∑
k1,...,km=0

pFC(~k)δω−
∑m
i=1 ω

′
iki,0

, (S36)

where δx,y is the Kronecker delta. Importantly, FCP(ω) can be approximated by generating samples ~k according

to the probability distribution pFC(~k). On the other hand, knowing that FC factors pFC(~k) are the probabilities of

detecting excitation patterns ~k at the output of linearly evolved squeezed coherent states, we conclude that FC profiles
can be simulated in a photonic experiment. That is, one can approximate FCP(ω) by generating photonic displaced
squeezed states, evolving them through a linear-optical network and performing boson sampling at its output [6].
Such a simulation procedure is, therefore, similar to Gaussian boson sampling. However, as opposed to Gaussian
boson sampling, photonic simulations of FC profiles require data corresponding to the detection of various photon
numbers

∑m
i=1 ki = n, i.e., n is not fixed here. Moreover, in general, simulations of FC profiles necessitate displaced

squeezed states rather than vacuum squeezed states as per Gaussian boson sampling (Note, however, that molecular
structural changes with no displacement do exist. For instance, photonic FC profile simulations of the tropolone
molecule, C7H6O2, require squeezed vacuum states only [34]).

As explained in the main text, the described procedure for simulating FC profiles via a photonic quantum device can
be reversed to provide a benchmarking tool. Namely, for a given photonic experiment, an FC profile corresponding to
a synthetic molecule can be constructed and simulated. The merit of such a procedure is to understand the fidelities
that one could expect to find in a similar setting engineered to investigate a particular molecule. To achieve this,
given the description of our experiment, we deduce the corresponding molecular parameters from Eqs. (S29)-(S34)
(this procedure yields not a unique but a set of synthetic molecules). Since our experiment relies on squeezed vacuum
states, |Ψ〉 appearing in Eq. (S35) is a squeezed vacuum state as well, |Ψ〉 = ⊗mi=1S(ξi) |0, . . . , 0〉. Thus, we are able to
simulate squeezing molecular structural transformations only, i.e., αi = 0, and, consequently, di = 0, ∀i, in Eq. (S33).
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In this configuration, the output probabilities can be described using the GBS formalism [Eq. (S1)-(S5)], so that the

FC factors pFC(~k) are given by

pFC(~k) =
|Haf B~k|

2

k1! · · · km!
√

detσQ

, (S37)

where B~k is obtained from B = UL · diag[tanh ξ1, . . . , tanh ξm] · UT
L by repeating ki times its ith column and row, and

σQ is given in Eq. (S1).
To quantify the enhancement of a quantum experiment over classical approximation strategies we adopt the

approach developed in Ref. [34]. The idea is to quantify this improvement in terms of the fidelity of experimentally
reconstructed profiles with respect to the fidelity obtainable by the best classical approximation. The latter represents
FC profiles with highest fidelity achievable from classical experiments, i.e., experiments employing classical states
only (that is, states with a non-negative Glauber-Sudarshan function [46]). As the fidelity between states is invariant
under unitary evolutions, finding the optimal classical strategy corresponds to finding the closest classical state to
initial displaced squeezed states [34]. In turn, the single-mode classical state closest to a single-mode displaced
Gaussian state is a coherent state with the same level of displacement [56]. Consequently, in absence of displacement,
vacuum is the optimal classical state. To quantify the quantum enhancement obtained in the experiment we then
consider the difference C = FQ − FC between the fidelity FQ of the FC profile reconstructed from the experiment to
the theoretical FC profile, and the fidelity obtained using the optimal classical strategy FC.

As a first test, we reconstruct the FC profile for a synthetic molecule directly associated to the device. Collected
experimental data using a pseudo number resolving detection scheme were used. In this case, reversing the protocol
and using it as a benchmarking tool corresponds to using the transfer matrix of the device as UL and the characterised
squeezing values as ξi. As the choice of frequencies ω′i does not affect the fidelity of an FC profile (only its shape),
which is the parameter of interest here, we choose them randomly and with arbitrary unit of measure. This defines the
synthetic molecule used for benchmarking. In this case, although the fidelity of the profile is very high (FQ > 99%),
the quantum enhancement is only C = 0.4%, i.e. while there is still an improvement, it is actually very low. This
is due to the fact that the squeezing in the sources is very low, which means that the FC profile is dominated by
classical vacuum contributions.

To obtain higher quantum enhancements, molecules involving higher squeezing values have to be involved. Below
we describe a prescription to simulate such molecules even when the actual squeezing in the device is lower. This
may be useful in practical implementations of Franck-Condon quantum simulations.

For simplicity, we focus on the case where no displacement is used, although the approach can be easily generalised
to the case with non-zero displacement. Consider the situation where we want to reconstruct the FC profile pFC(~k)
for a molecule with corresponding squeezing parameters ξi and unitary operation UL. However, in our imperfect
experiment we have access to a limited amount of squeezing only, ξ̄max ≤ maxi ξi, so that for each source we can only
implement a squeezing ξ̄i ≤ ξ̄max. The transition amplitudes can be then estimated in the imperfect device by tuning
the squeezing parameters in the sources so that tanh

(
ξ̄i
)

= γ tanh(ξi), with 0 < γ ≤ 1 a real constant rescaling and

diag[tanh
(
ξ̄1
)
, . . . , tanh

(
ξ̄m
)
] = γ diag[tanh(ξ1), . . . , tanh(ξm)]. In this way, considering also uniform losses η in the

device, from Eq. (S37), we have a simple relation between the ideal FC factors pFC(~k) and the ones reconstructed in

the imperfect device p̄FC(~k), given by

p̄FC(~k) = Nηnγ2npFC(~k), (S38)

with n =
∑m
i=1 ki the total number of photons in the output configuration ~k, and N is a normalization constant. As

η and γ are known from the characterisation of the device, Eq. (S38) can be inverted to reconstruct the FC profile
via

pFC(~k) =
p̄FC(~k)/η

∑
kiγ2

∑
ki∑

~x p̄FC(~x)/η
∑
xiγ2

∑
xi
. (S39)

Note that this post-processing procedure does not increase the computational complexity of the experiment, in
the sense that, if from the experiment we are able to collect only up to n-photon events, then we are truncating the
FC profile in Eq. (S36) at n-photon contributions. This implies that an FC profile reconstructed with this approach
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is faithful only if the ideal contributions involving more than n photons are negligible, which, for large values of n,
is in general true only for η and γ close to unity. This can be also observed in Fig. 4 (inset), where the quantum
enhancement initially increases with γ, but starts to decrease as higher order terms become dominant. Therefore, the
approach is clearly not scalable, i.e. it will not provide much help in future large-scale implementations. Nonethe-
less, it can provide significant advantages in near-term quantum devices, as shown in its application to our experiment.

We implemented the protocol described above to reconstruct FC profiles of synthetic molecules requiring higher
squeezing using the post-processing procedure. The synthetic molecule to be simulated is obtained as in the first
test above, with the only difference that now the associated squeezing values are ξi = ξ̄i/γ, where ξ̄i are the
squeezing parameters in the device, preliminarily characterised as described in previous sections. In Fig. 4 (inset)
the improvement over optimal classical strategies is reported for different values of simulated squeezing (reported as
maxi ξi), that is for different values of γ, both for the case where the post-processing is performed (solid black line)
and when raw data is instead applied (dashed black line). It can be noted that the procedure provides a significant
improvement, with the quantum enhancement initially increasing and then decreasing when the FC terms, due to
more than 4-photon contributions, start to be dominant. The maximum improvement C = 9% is obtained for γ ≈ 5,
for which the FC profile (plotted in Fig. 4) has a fidelity of 86% with the ideal one. In all the cases, applying the
post-processing procedure provides a significant advantage as compared to raw data usage.

Estimation of photon number scaling with current silicon photonics technology

Finally, we analyse the potential of the integrated quantum photonics approach as a platform for multi-photon
boson sampling protocols in terms of estimated count rates when scaling up the component integration with current
technologies. By using as relevant parameters for each component the values measured in our experimental set-up,
we aim to provide an approximate evaluation of what event rates can be expected from current photonic technologies
in near-term devices. The rates for events with n signal photons, emitted from k integrated sources and injected in a
m mode interferometer, for SBS and GBS are respectively

Rsbs(n, k,m) = R0

[(
k

n

)
tanh(ξ)

2n
sech(ξ)

2k

]
ηmnu η2n

ch η
2n
det,

Rgbs(n, k,m) = R0

[(
k/2 + n/2− 1

n/2

)
tanh(ξ)

n
sech(ξ)

k

]
ηmnu ηnchη

n
det. (S40)

Here R0 represents the repetition rate of the pump, ξ the squeezing at the sources, ηdet the detection efficiency, ηch

the transmission of the optical channels between the interferometer and the detectors (which includes chip-to-fiber
coupling loss for off-chip detection). The factor ηmu represents the total losses in the interferometer, where ηu represents
the losses in each coupling operation (e.g. evanescently coupled waveguides in a universal scheme [11, 57, 58]), and
the number of single operations each photon undergoes in the m mode interferometer is assumed to be m, as in the
universal scheme proposed in Ref. [58].

In the analysis below we consider a source in each input mode of the interferometer (m = k), and used the system
efficiencies characterised in our silicon photonic device and experimental set-up: ηdet = 80%, ηch = 64%, ηu = 99.95%,
R0 = 500 MHz. We consider two standard types of integrated sources: a low efficiency one, i.e. the spiral sources
used in our device, with a squeezing parameter ξ = 0.17, and more efficient sources based on integrated ring resonator
cavities (see, for example, Ref. [44]), with ξ = 0.31. We also consider the case where on-chip detection is performed,
where no losses associated to off-chip coupling and fiber transmission are present (ηch = 1).

In Table S1 we report the event rate estimates for these cases with a system size corresponding to a 100-modes
interferometer (k = m = 100), which is realistic on near-term devices thanks to the fabrication scalability of silicon
photonics. In particular, an array of 100 detectors to detect the signal output modes (200 in total for SBS considering
the idler modes) would be required, which is possible with current technologies. For example, arrays of > 200
individually addressable on-chip high-efficiency SNSPDs have already been demonstrated (see e.g. Ref. [37]). The
rates suggest that experiments with tens of interfering photons should be available with further scaling of current
components in silicon photonics, without any further major technological breakthrough required.

To investigate the limits of the approach, namely scaling up the number of components with current silicon quantum
photonics technology, we have tested the event rates consider larger-scale circuits with up to 1000-modes interferome-
ters and 1000 detectors on the signal modes. Again, we assume the number of sources and signal modes and detectors
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Number of
signal photons

Event Rate (Hz)

Spiral Sources Spiral Sources & Int.Det. Ring Sources Ring Sources & Int.Det.

SBS GBS SBS GBS SBS GBS SBS GBS

10 0.3 6 × 103 2 × 103 5 × 105 65 6 × 104 4 × 105 5 × 106

16 - 1 8 × 10−3 1 × 103 2 × 10−3 4 × 102 3 × 103 4 × 105

20 - 2 × 10−3 - 15 - 7 30 5 × 104

32 - - - 4 × 10−6 - 1 × 10−5 - 15

40 - - - - - - - 2 × 10−2

TABLE S1. Estimated count rates near-term experiments using current technologies. The rates are calculated considering a
silicon device where integrated sources deliver quantum states to a 100-modes interferometer (m = k = 100). This configuration
requires in total 200 detectors for SBS (100 for the signal modes and 100 for the idler modes), and 100 detectors for GBS.
Note that in SBS n signal photons detection correspond to 2n-fold events including the n idler photons. The calculation, via
Eq.(S40), is performed using the average values for coupling, filtering, on-chip and off-chip transmission losses, and detection
efficiency as characterised in our experiment.

FIG. S13. Estimated counts for different sizes of the optical circuit. In this analysis, the number of signal detectors is considered to be
the same as the number of modes in the interferometer and the number of sources. a) and b) show the event rate for different circuit size
and number of photons in a SBS scenario and a GBS scenario, respectively. Black lines show the optimal values of the event rates. c)
Optimal event rate estimated for different numbers of signal photons in the SBS (red) and GBS (blue) regimes. The dashed line represents
an estimation for the case where standard boson sampling is performed using on-chip quantum dots sources (where, for fair comparison,
the size of the interferometer is the same as in GBS). d) Size of the interferometer associated to the optimal cases. In all plots, shaded
areas represent impractical experiments, where the threshold is set to be 1 event/week.

to be the same, and consider a technology including ring sources and integrated detectors with efficiency as above.
As can be observed in Fig. S13a-b, while increasing the number of sources provides an initial improvement to the
event rates, it actually turns to be detrimental if the circuit size becomes too large. The reason for this is that losses
in the interferometer, which scale as ηmu = ηku become dominant for values of k that are too large, suppressing the
combinatorial enhancement provided by the scattershot or Gaussian boson sampling approaches. A trade-off thus
has to be adopted to obtain an optimal event rate in SBS and GBS, which is reported in Fig. S13d (also shown as
black lines in Fig. S13a-b). The optimal event rates as a function of photon number are reported in Fig. S13c for the
different approaches. As expected, the presence of losses implies an exponential decrease in the event rate. However,
experiments with a large number of photons are still possible before the event rate becomes impractical, which we
identify as experiments with an event rate lower than a threshold of 1 event/week (shaded areas in Fig. S13). For
GBS such threshold is reached with ≈ 70 signal photons, while for SBS with ≈ 48 signal photons. These values are
expected to be at the limit of what is tractable for classical supercomputers [10].

For comparison, we also perform the analysis for another approach which has been recently investigated, that is
standard boson sampling using a time-demultiplexed high-efficiency quantum dot source to deliver multi-photon Fock
states into the circuit [20]. For the relevant parameters we use values similar to the ones proposed in Ref. [20]: photon
generation probability from the quantum dot pqd = 65% and repetition rate R0,qd = 76 MHz. While we optimistically
consider no losses in delivering the photons to the integrated circuit (achievable for example by integrating the quantum
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dot), the losses in the photon demultiplexing scheme, given by ηdemux = dηswitch log2 nen, where ηswitch is the value
for each switch in the scheme. We consider low-loss switches based on Pockels cells with ηswitch = 99.5%, as proposed
in Ref. [20]. The scaling of the event rate in this scenario is reported as a dashed line in Fig. S13c, where, for fair
comparison, the size of the interferometer is considered to be the same as for the GBS case. We estimate a significant
decrease of the event rates with this approach compared to SBS or GBS.

To further increase the complexity, e.g. to target experiments with hundreds of photons, the capability to scale
up the number of current optical components in silicon quantum photonics is not enough: technological progress is
required. A first improvement would be to develop materials with lower transmission losses and more efficient sources
of squeezed light. Promising integrated photonic platforms are being developed in this direction [59]. Ultimately, the
introduction of rudimentary error-correction techniques in boson sampling, tackling the effect of losses, is likely to be
required for applications far beyond current capabilities.


