276 research outputs found

    On Ladder Logic Bombs in Industrial Control Systems

    Full text link
    In industrial control systems, devices such as Programmable Logic Controllers (PLCs) are commonly used to directly interact with sensors and actuators, and perform local automatic control. PLCs run software on two different layers: a) firmware (i.e. the OS) and b) control logic (processing sensor readings to determine control actions). In this work, we discuss ladder logic bombs, i.e. malware written in ladder logic (or one of the other IEC 61131-3-compatible languages). Such malware would be inserted by an attacker into existing control logic on a PLC, and either persistently change the behavior, or wait for specific trigger signals to activate malicious behaviour. For example, the LLB could replace legitimate sensor readings with manipulated values. We see the concept of LLBs as a generalization of attacks such as the Stuxnet attack. We introduce LLBs on an abstract level, and then demonstrate several designs based on real PLC devices in our lab. In particular, we also focus on stealthy LLBs, i.e. LLBs that are hard to detect by human operators manually validating the program running in PLCs. In addition to introducing vulnerabilities on the logic layer, we also discuss countermeasures and we propose two detection techniques.Comment: 11 pages, 14 figures, 2 tables, 1 algorith

    A Flashback on Control Logic Injection Attacks against Programmable Logic Controllers

    Get PDF
    Programmable logic controllers (PLCs) make up a substantial part of critical infrastructures (CIs) and industrial control systems (ICSs). They are programmed with a control logic that defines how to drive and operate critical processes such as nuclear power plants, petrochemical factories, water treatment systems, and other facilities. Unfortunately, these devices are not fully secure and are prone to malicious threats, especially those exploiting vulnerabilities in the control logic of PLCs. Such threats are known as control logic injection attacks. They mainly aim at sabotaging physical processes controlled by exposed PLCs, causing catastrophic damage to target systems as shown by Stuxnet. Looking back over the last decade, many research endeavors exploring and discussing these threats have been published. In this article, we present a flashback on the recent works related to control logic injection attacks against PLCs. To this end, we provide the security research community with a new systematization based on the attacker techniques under three main attack scenarios. For each study presented in this work, we overview the attack strategies, tools, security goals, infected devices, and underlying vulnerabilities. Based on our analysis, we highlight the current security challenges in protecting PLCs from such severe attacks and suggest security recommendations for future research directions

    VIRTUAL PLC PLATFORM FOR SECURITY AND FORENSICS OF INDUSTRIAL CONTROL SYSTEMS

    Get PDF
    Industrial Control Systems (ICS) are vital in managing critical infrastructures, including nuclear power plants and electric grids. With the advent of the Industrial Internet of Things (IIoT), these systems have been integrated into broader networks, enhancing efficiency but also becoming targets for cyberattacks. Central to ICS are Programmable Logic Controllers (PLCs), which bridge the physical and cyber worlds and are often exploited by attackers. There\u27s a critical need for tools to analyze cyberattacks on PLCs, uncover vulnerabilities, and improve ICS security. Existing tools are hindered by the proprietary nature of PLC software, limiting scalability and efficiency. To overcome these challenges, I developed a Virtual PLC Platform (VPP) for forensic analyses of ICS attacks and vulnerability identification. The VPP employs the packet replay technique, using network traffic to create a PLC template. This template guides the virtual PLC in network communication, mimicking real PLCs. A Protocol Reverse Engineering Engine (PREE) module assists in reverse-engineering ICS protocols and discovering vulnerabilities. The VPP is automated, supporting PLCs from various vendors, and eliminates manual reverse engineering. This dissertation highlights the architecture and applications of the VPP in forensic analysis, reverse engineering, vulnerability discovery, and threat intelligence gathering, all crucial to bolstering the security and integrity of critical infrastructure

    Delay Performance and Cybersecurity of Smart Grid Infrastructure

    Get PDF
    To address major challenges to conventional electric grids (e.g., generation diversification and optimal deployment of expensive assets), full visibility and pervasive control over utilities\u27 assets and services are being realized through the integratio

    Securing the Participation of Safety-Critical SCADA Systems in the Industrial Internet of Things

    Get PDF
    In the past, industrial control systems were ‘air gapped’ and isolated from more conventional networks. They used specialist protocols, such as Modbus, that are very different from TCP/IP. Individual devices used proprietary operating systems rather than the more familiar Linux or Windows. However, things are changing. There is a move for greater connectivity – for instance so that higher-level enterprise management systems can exchange information that helps optimise production processes. At the same time, industrial systems have been influenced by concepts from the Internet of Things; where the information derived from sensors and actuators in domestic and industrial components can be addressed through network interfaces. This paper identifies a range of cyber security and safety concerns that arise from these developments. The closing sections introduce potential solutions and identify areas for future research
    • …
    corecore