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Abstract 

 

Programmable Logic Controllers (PLCs) play an important role in Industrial Control 

Systems (ICS), production lines, public infrastructure, and critical facilities. A 

compromised PLC would lead to devastating consequences that risk workplace safety, 

humans, environment, and associated systems. Because of their important role in ICS, 

more specifically PLC Based Systems (PLC-BS), PLCs have been targeted by various 

types of cyber-attacks. Many contributions have been dedicated to protecting ICS and 

exploring their vulnerabilities and threats, but little attention and progress have been made 

in enhancing the security of PLC code by utilizing internal PLC ladder logic code 

solutions. Mainly the contributions to protect and secure PLC-BS are related to external 

factors such as industrial networks, Supervisory Control And Data Acquisition Systems 

(SCADA), field devices, and servers. Focusing on those external factors would not be 

sufficient if adversaries gain access to a PLC since PLCs are insecure by design - do not 

have built-in self-defense features that could reduce or detect abnormalities or 

vulnerabilities within their running routines or codes. PLCs are defenseless against code 

exploitations and malicious code modifications.  This research work focuses on exposing 

the vulnerabilities of PLC ladder logic code and provides countermeasure solutions to 

detect and prevent related code exploitation and vulnerabilities. Several test-bed 

experiments, using Rockwell PLCs, were conducted to deploy real-time attack models 

against PLC ladder logic code and provided countermeasure solutions to detect the 

associated threats and prevent them. The deployed attacks were successfully detected by 

the provided countermeasure solutions.  These countermeasure techniques are novel, real-

time PLC ladder logic code solutions that can be deployed to any PLC to enhance its code 

defense mechanism and enable it to detect and prevent code attacks and even bad code 

practices. The main novel contribution, among the provided countermeasure solutions, is 

the STC (Scan Time Code) technique. STC is a ladder logic code that was developed, 

deployed, and tested in several test-bed experiments to detect and prevent code 

abnormalities and threats. STC was able to detect and prevent a variety of real-time attack 

models against a PLC ladder logic code. STC was designed to capture and analyze the 

time a PLC spends in executing a specific routine or program per scan cycle to monitor 

any suspicious code modifications or behaviors. Any suspicious modifications or 

behaviors of PLC code within a particular routine would be detected by STC which in 
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return would stop and prevent further code execution and warn operators. In addition to 

detecting code modifications, the STC technique was used to detect any modification of 

the CPU time slice scheduling. Another countermeasure technique was PLC code that 

was used to detect and prevent the manipulation or deterioration of particular field 

devices. Moreover, several countermeasure PLC code techniques were proposed to 

expose the vulnerabilities of PLC alarms code where adversaries could find ways to 

launch cyber-attacks that could suppress (disable) or silence the alarms and critical faults 

of associated ICS devices monitored by PLCs. Suppressed alarms would not be reported 

to operators or promptly detected, resulting in devastating damage. All provided 

countermeasure solutions in this work were successfully tested and capable of detecting, 

preventing, or eliminating real-time attack scenarios. The results were analyzed and 

proved the validity of the provided countermeasure solutions.  This research work, also, 

provides policies, recommendations, and general countermeasures to enhance the validity 

and security of PLC code. All the techniques provided in this work are applicable to be 

implemented and deployed to any PLC at no extra cost, additional resources, or complex 

integration. The techniques enhance the security of PLCs by building more defensive 

layers within their respective routines which in return would reduce financial losses, 

improve workplace safety, and protect human lives and the environment.  
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Chapter 1  Introduction 

1.1 Background 

PLCs are widely used in ICS and automation including public facilities and infrastructure, such 

as oil refineries, power plants, nuclear plants, water treatment, and manufacturing factories. 

Because of their important role in nations’ critical infrastructure, ICS, and manufacturing 

systems, PLCs have become a national security concern that need special attention and 

protection [1]. ICS are more prone than other systems to cyber-attacks due to their 

heterogenous nature, complex design, and the absence of overall common security framework.  

In 2011, as shown in Fig. 1.1, the number of SCADA attacks increased by 300%. The average 

number of ICS flaws increased by 5% every year after [2]. A study conducted by Kaspersky 

Lab, as shown in  Fig. 1.2, shows that most of these PLC related attacks are either critical ones, 

49%, or of medium risk, 42%. The report clearly indicates that only 85% of these known 

published vulnerabilities are fixed, but the rest are either partially fixed, can’t be fixed, or not 

fixed at all [3]. According to Symantec, there were about 135 public vulnerabilities reported 

that are related to ICS/PLC-BS in 2015. While in 2014, only 35 ICS-related vulnerabilities 

were reported [4].  

 

Fig. 1.1. SCADA Vulnerability Disclosures by Year [2]. 
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Fig. 1.2. SCADA’s and other components vulnerabilities [3]. 

 

In 2017, Kaspersky Lab’s Industrial Control Systems Cyber Emergency Response Team 

reported that  the percentage of ICS computers and associated devices that were attacked by 

cyber-attacks increased from 36.6% in the first half of 2017 to 41.2% in the first half of 2018 

[5].  A survey, conducted by the Kaspersky Lab team, shows that about 70% of the surveyed 

companies were worried about ICS cyber-threats, considering attacks against their ICS 

systems highly possible [6]. The survey shows that more than 52% felt the need to provide 

more resources for more enhanced secure ICS. With the advancement and development of 

Internet of Things (IoT) and Industry 4.0 approaching, where ICS are more interconnected and 

remotely accessible, cyber security of ICS’s - including PLCs - has become a hot issue. In 

2019, as shown in Fig. 1.3, a survey conducted by CS2AI showed that many organizations had 

numerous types of their control systems, including PLCs and HMIs, directly connected to the 

internet; were remotely accessible [7].  
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Fig. 1.3. PLCs HMIs, and other SCADA components connected directly to internet [7]. 

 

Many cyber security research studies on ICS have been published but they are relatively 

inadequate compared to those of IoT and Information Technology (IT). And they are even more 

insufficient when compared to PLCs in addressing PLC code. 

PLCs by design have no defense mechanisms. PLCs do not have the built-in features to detect 

malicious code or suspicious code modifications.  PLCs are defenseless blind real-time 

executors of any syntax or code elements as long as the code is legitimate and does not create 

any compiling errors. Enhancing the security and the validity of PLC code is crucial even 

though the overall PLC based systems might be secure and well protected.  It is important to 

not just try to prevent adversaries from accessing PLC code, but also ensure that if they do, the 

damage to the code would be as minimal as possible, detected, and reported. Adding more 

techniques to secure and validate the PLC code would not just impede and slow down attackers 

but would also find inadvertent wrong or bad code practices.  

Nevertheless, it has been proven that relying on old methods such as airgap techniques and 

securing the accessibility to a PLC is no longer sufficient and effective since adversaries, 

hackers or disgruntled workers, could find a backdoor to access the code and modify it, causing 

failures and critical consequences to PLC based systems. For instance, an inside attack by 

disgruntled worker targeted the alarms code of the Maroochy wastewater system in Australia 

polluting residential areas and water with about 260,000 gallons of raw sewage; causing serious 

environmental damage [8]. Another example that attacked an airgaped public facility was the 

Stuxnet worm [9] [10]. Stuxnet gained access to the nuclear power plant computers via USB 

[11]. Once Stuxnet gained access to the computers starting spreading out and infected PLCs, 

Huma Machine Interface (HMI) devices, and related devies; causing significant physical 

damage to centrigues  [12]. 
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1.2 Contributions 

The main contribution of this research work is to enhance the security of the PLC code by 

equipping PLCs with ladder logic code techniques that could make the running code more 

secure, self-aware of code threats, and capable of detecting and preventing certain malicious 

attacks and code exploitations. One of the main and novel solutions proposed in this work was 

providing a unique ladder logic code technique, STC, that was able to expose certain 

vulnerabilities in the PLC code. STC was able to detect suspicious code modifications and 

behaviors and prevent further attacks. 

Contrary to the claim in [13] that claims scan time of a certain PLC program not applicable in 

detecting code abnormalities, the STC technique, introduced in this work, was able to detect 

code behaviors based on the scan time of a designated PLC code or routine.  

The provided techniques are very straightforward code techniques that could be easily 

implemented and deployed to any running code without overloading the system with external 

resources and complex solutions.  

This research work exposed the vulnerabilities of the ladder logic programs that are executed 

within the PLC, which is responsible for controlling and monitoring SCADA or ICS devices 

and operations. It also provides countermeasure solutions to mitigate or eliminate certain 

vulnerabilities and prevents related attacks.  

 

1.2.1 Attack Models 

This work addressed several attack models with different scenarios. The attacks were deployed 

to a real-time PLC code testbed. The generated attack models were able to embed malicious 

code within the running PLC code, affecting its behavior, manipulating its intended operations, 

and altering critical values. A variety of attack scenarios were applied to exploit and 

compromise PLC code are listed as follows: 

• PLC alarms code related. 

• Suppressing alarms of ICS monitored and controlled by PLC code. 

• Delaying alarms to evade alerting staff and operators and create more damage to 

associated devices. 

• Faking alarms to evade or fool staff and operators into assuming all alarms are valid 

and real-time based. 

• Inhibiting the status of certain alarms: always ON (active) or OFF (inactive). 
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• Tampering with PLC ladder logic code. 

• Tampering with the behavior and diagnostics of physical devices of drives, robots, pins, 

clamps, etc. by suppressing or modifying real-time status or feedback. 

• Tampering with critical preset values of instructions, such as timers and counters. 

• Delaying and overloading the execution time of certain routines and overall program 

without being detected or noticed. 

• Deleting potion PLC code (a couple of rungs or lines of codes) without interrupting the 

running program or triggering any faults. 

• Deleting certain instructions within a rung without interrupting the running code or 

triggering and faults. 

• Skipping several critical code lines (rungs) while the code was running code. The attack 

did not trigger any interruption or faults. 

• Tampering with field device behavior and code setup. The attack was not detected or 

noticed by the PLC or operators. 

• Modifying the execution time allowance scheduled by the CPU by changing the system 

overhead time slice of the PLC. That drastically affected the scan time of certain 

routines but was not detected by the PLC. 

1.2.2 Countermeasure Solutions: 

Several countermeasure solutions were developed and applied to PLC code to make it more 

self-aware of any code abnormalities and undesirable behavior. The proposed solutions enabled 

the PLC to detect the introduced attacks models and prevent their malicious consequences.  

Those countermeasures were successfully developed, deployed, and tested. They were able to 

prevent and detect all the attack models during real-time implementation and testing. The 

research provides an analysis of the countermeasures and the attacks using real-time trends that 

captured the behavior of the code during the designated duration.  

The countermeasure solutions or techniques are summarized as follows: 

• Scan Time Code (STC) technique: One of the major and novel techniques provided in 

this work was the utilization of scan time of a particular ladder logic code to analyze 

and monitor its behavior and suspicious modifications. The average scan time of a 

particular routine was studied and analyzed under normal and attack-free situations. 

That average was used as a reference base where it was compared to any ongoing future 

scanning. If the scan time of a particular routine changed, that would be an indicator of 
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a suspicious routine modification. So, whenever a scan time discrepancy between the 

average and the monitored one was found, the PLC stopped further scanning and 

warned operators. STC was used to detect and prevent the following attack based on 

the changes of the scan time of a routine: 

• Detecting an increase in the scan time indicated that additional code elements were 

embedded to the routine. 

• Detecting a significant increase in the scan time indicated that finite loops were 

embedded to overload the scan cycle. 

• Detecting a drastic increase in the scan time indicated that the system overhead time 

slice was modified. 

• Detecting a decrease in the scan time indicated that code elements were deleted. 

• Detecting a significant decrease in scan time indicated that the routine is skipped using 

instruction such as jumpers, JMP. 

• Countermeasures to detect any malicious attacks against PLC alarms code. 

• Detected if alarms were faked. 

• Detected if alarms were valid and not suppressed. 

• Detected if alarms code was tampered with. 

• Detected if alarms were inactive or their statuses were inhibited. 

• Countermeasures to detect malicious attacks against field devices behaviors. The 

countermeasure validated the physical behavior of field devices with respect to 

designated actual running ladder logic code. For instance, a timer was used to verify 

that a pin is not taking extra time during extending or retracting its rod. The following 

is a list of vulnerabilities were detected and prevented code: 

o Swapping Statuses 

o Swapping Outputs 

o Embedding Always ON status 

o Embedding Always OFF status 

o Deleting Outputs 

o Delaying status 

o Delaying Outputs 

o General recommendations and guidelines to enhance the security of PLC code 

and reduce vulnerabilities. 

 



23 

 

1.2.3 Thesis Outline  

Chapter 2 presents a background of PLCs and related technologies including ICS components 

such as HMIs, PLCs, Networks, and RTUs. It presents, also, an overview of PLC major 

components and functionalities.  

Chapter 3 presents a literature review of research works of major ICS cyber incidents is 

presented, as well, in addition to recent statistical reports related to ICS vulnerabilities and 

attacks. A special section is dedicated to vulnerabilities and threats that are directly related to 

PLC, including the operating systems of PLCs, PLC code, and associated I/O.  

Chapter 4 presents a contributed, published work that goes over ladder logic code 

vulnerabilities and bad code practice within PLCs. 

Chapter 5 presents a contributed, published work that is an extension of the published research 

work presented in Chapter 3. The chapter provides literature of PLC-BS threats and 

vulnerabilities. It proposes practical guidelines for good code practicing and general security 

recommendations. 

Chapter 6 presents a contributed, published work about a novel solution to detect and prevent 

PLC alarms suppression or manipulation. It demonstrates the vulnerabilities in PLC alarms 

code and the introduced real-time countermeasures that were introduced to detect and prevent 

associated code exploitations and attacks. 

Chapter 7 presents a contributed, published work that proposes novel solutions with real-time 

techniques to detect and prevent code abnormalities and suspicious code modifications. The 

chapter explains a real-time conducted test bed that was developed based on PLC ladder logic 

code, where the test bed was used, also, to develop attack models against the running code. In 

this chapter, a detailed explanation about the attacks that were able to exploit code 

vulnerabilities without being detected and without stopping any running code, though the 

attacks caused major code modifications, is provided. The chapter provides details about the 

introduced novel real-time countermeasures against such attacks. It explains the role of 

developed STC code in detecting and preventing code attacks, code abnormalities, and physical 

abnormal behaviors.  

Chapter 8 presents the conclusions extracted from this work and potential future work to extend 

what has been presented in this thesis. 
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Chapter 2  Overview of PLC-BS: Technologies  

2.1 Introdution 

PLC-BS are hardware components or machinery that are mainly monitored and controlled by 

PLCs. PLC-BS consists of PLCs and other associated industrial components such as: sensors, 

field devices, HMIs, I/O modules, industrial networks, etc.  

The term “PLC-BS” is used in this work to ensure that other non-PLC driven systems are 

excluded from this research. It is often wrongly assumed that any SCADA or industrial system 

is driven by PLCs, but that is not always the case. Industrial automated systems might rely on 

PLCs or other components such as PCs or relays.  Systems like ICS, SCADA, or OT may or 

may not include PLCs in certain areas or processes, as shown Fig. 2.1. PLC-BS could be 

integrated with SCADA systems to provide better visualization and analysis of the collected 

and logged data. PLC-BS do not depend on SCADA for their functionalities.  

Another inaccurate naming convention is when ICS and SCADA terms are used 

interchangeably. ICS is a more accurate and general term to be used while referring to industrial 

automated systems.  ICS is a general and collective term that is used to refer to varieties of 

control systems that include different types of PCs, field devices, I/O modules, networks, 

HMIs, supervisory devices, and controls - such as PLCs or DCS. 

ICS provide means to monitor and control operations and processes through SCADA systems, 

DCS systems, or others. So, ICS is more general and “all-encompassing” term than SCADA in 

certain situations. 

A PLC-BS are a major subset of ICS.  PLC-BS could be standalone systems or could be 

integrated with other industrial systems, such as SCADA systems or Industrial Automation and 

Control Systems (IACS) as shown in  Fig. 2.1.   

All PLC based systems including their industrial computing components, devices, networks, 

and operations are categorized under Operational Technology (OT) framework. So, PLC-BS, 

whether integrated with SCADA or not, are a subset of ICS.  And ICS are a subset of OT. 

Overall, PLCs are a leading technology in controlling and monitoring automated processes or 

operations in industrial automation systems, manufacturing systems, production lines, 

infrastructure, and even in Distributed Control Systems (DCS).  
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Fig. 2.1. PLC is a common major component among automated systems. 

 

2.2 ICS Components 

ICS and SCADA terms have been used interchangeably in research works, but ICS is a more 

accurate term to be used while referring to industrial automated systems.  ICS or ICAs is a 

general and collective term that is used to refer to different types of automated industrial and 

manufacturing systems that include variety of field devices controls - such as PLCs or PCs, 

and machinery components. ICS monitor and control operations and processes through variety 

of means such as PLCs, PCs, DCS systems, etc. On the other hand, SCADA are integrated 

applications that are used as visual aid to collect, monitor, analyze data, alarms, tasks, and 

events of associated components. SCADA could be integrated to ICS architecture for better 

efficiency and monitoring. 

2.2.1 DCS 

DCS are process oriented and state driven control systems that might contain one or more 

computers. DCS are known as computer or PLC based systems that receive input signal to act 

upon and process tasks. Unlike SCADA, DCS systems are not built to gather information and 

log monitored data or events. DCs are not used in large geographical areas but rather at a single 

local site. 

2.2.2 SCADA 

SCADA systems, nowadays, are used to monitor, log, and control operations, processes, and 

associate devices of automated systems at a supervisory level. A SCADA system consist of 

several critical components as shown in Fig. 2.2. SCADAs are used to control, locally or 

remotely, large-scale processes and operations covering many devices several sites over a large 

distance.  
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Fig. 2.2. PLC is a common major component in a typical SCADA system. 

 

SCADA systems are used in a variety of automated systems and critical sectors such as:  

• Smart buildings. 

• Smart cities. 

• Oil and Gas sectors. 

• Energy sectors. 

• Water and Wastewater treatment and distribution. 

• Manufacturing and Industrial systems 

• Petrochemical facilities 

• Infrastructure facilities. 

 

Generally, SCADA systems are composed of the following: 

• HMIs: Are application-based devices that visually display data on customized visual 

panels or PC based Graphical User Interface (GUIs) to aid operators in monitoring and 

manually controlling ICS associated devices and operations. With the help of PLCs, 

HMIs are the main resource to check system and devices statuses, alarms and faults, 

manual and semi-manual tasks.  HMIs could be used to log information about the 

controlled devices and offer statistical tools and charts. Such server-based HMIs could 

be used to utilize supervisory control software, PLC design software, and supervisory 

monitoring tools. HMIs can be used locally or remotely based on the types used. 



28 

 

• RTUs: Remote terminal units (RTUs) are less dominant than PLCs. They are 

microprocessor-controlled field devices that interface with SCADA or DCS systems 

and associated devices. 

• Networks: Are used to carry signal among ICS devices. Networks could be EthernetI/P, 

Modbus, PROFINET, PROFIBUS, DeviceNet, ControlNet, EtherCAT, etc. 

• Field devices: Are monitored and controlled by a PLC through designated network and 

I/O modules. Field devices could be solely inputs that report the status of a device to 

the PLC such as limit switches or solely outputs such as typical actuators. Other devices 

could be more complex and interact with a PLC in two ways such drives, encoders, etc. 

• PLCs: are industrial grade computing controllers that are capable of being programmed 

to monitor and control automated processes and operations. More details are provided 

in Section 2.3. 

 

2.3 PLC Fundamentals  

As special industrial grade computers, PLCs are used to monitor and control functions, 

operations, processes, and other devices to automate systems.  PLCs eliminated much of the 

hardwiring and relay control circuits; reducing costs and troubleshooting time. PLCs are rigid 

and reliable, real-time computers that continuously capture all incoming inputs (data from 

sensors), execute code, and update outputs (such as energizing actuators or coils). 

2.3.1 Why PLCs? 

• Fast response: since they are built to be fast and dedicated computers to do specific 

tasks. Being equipped with special industrial grade I/O modules and interfaces made 

monitoring and controlling much faster than regular PCs and microcontrollers. 

• Easier to program: PLCs can be programmed using simple languages, like ladder 

logic. A PLC routine or program can be easily edited while the code is running; no 

need for recompiling the whole file and downloading it. 

• Reliable: PLCs are proven to run for years and execute their programs without any 

issues once are properly compiled and downloaded. 

• Cost effective: They were designed to replace relays and associated hardwiring. 

Nowadays, PLCs are being used to replace relays circuits including safety relays and 

control circuits.  
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• Better communications: PLCs use a variety of communication protocols and I/O 

interfaces. A PLC is designed to communicate to field devices associated with its 

controlled automated system: HMIs, sensors, limit switches, drives, actuators, other 

PLCs, etc. A PLC, for instance, that is Ethernet based can handle thousands of inputs 

and outputs. 

• Easier to troubleshoot: By having all the inputs of field devices reported to a PLC 

and all controlling outputs transmitted from it, a PLC can track the status of every 

field device, control its associated outputs, and communicate that to HMIs and 

operators. 

• Rugged: PLCs are built to tolerate tough environments and harsh industrial 

conditions. 

2.3.2 Components and Parts associated with PLCs 

The following is a list of major components of a PLC and associated components that can be 

also seen in Fig. 2.3: 

• Power supply 

• Memory unit: stores instructions, data, and the PLC code. 

• Central Processing Unit (CPU). 

• Operating System (OS): It is used to manage and control the hardware resources and 

functionalities within a PLC and other peripheral devices. PLCs have RTOS (Real Time 

OS) that supports real time multi-threaded applications with managed processes and 

deterministic behaviors within designated time constraints. A good example of PLC OS 

is VxWorks [14]. Unlike regular microcontrollers, PLCs consist of firmware (OS) 

which make them vulnerable to attacks and threats.  

• Communication port: used for communication to HMIs, other PLCs, field devices, etc. 

• I/O module: It is a module that provides input and output (Digital and/or analog). 

Input/Output Modules (I/O Modules) act as mediators between the processor and the 

input/output devices. The input modules receive signals from switches or sensors and 

send them to the processor. The output modules send the processor signals to the control 

devices like relays, drives, motors, etc. I/O modules could be built-in within the PLC 

or standalone ones. Modules can be added to the PLC Chassis or access remotely from 

other locations. 
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• Programming software: a software designer that is a PC based to design and write the 

code of the PLC. Once the code is developed, it should be downloaded to its designated 

PLC. A good example would be Logix Designer for Rockwell or Totally Integrated 

Automation (TIA) for Siemens. 

• Communication Software: It is used to facilitate communication among PLCs, PCs, and 

related devices.  A good example would be RSLinx sotware. RSlinx facilitates 

monitoring, editing, or downloading the designed code to the PLC. 

 

 
Fig. 2.3. PLC Components 

 

 

2.3.3 PLC Code Design 

To design, develop, or edit PLC code a PC based software design is required, such as TIA 

portal for Siemens or Studio 5000 (Logix Designer) for Rockwell [15]. In addition to code 

design software, some PLCs vendors require data communication software, such as RSLinx, 

to enable users downloading the code from a PC to a PLC where the running code within the 

PLC can be monitored or modified. PLC programing software, such as Studio 500, allows users 

to organize and structure the code, schedule events (interrupts), tasks, scan options, etc.  

Typically, PLC code is a continuous real-time code that controls, processes, and monitors all 

the parameters, inputs, outputs, and other decisions needed to run any automated or manually 

associated devices or systems. Therefore, the code must be highly reliable with real-time data 

availability and high integrity to make prompt and precise logical calls and decisions. Unlike 

some other high-level languages, ladder logic code is accessible and editable at any time even 

when the PLC is running without stopping or restarting the whole PLC ladder logic program.  
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The PLC code can be designed in several IEC 61131-3 approved standard programming 

languages [16]:  

• Ladder Logic Diagram (LD or LLD) is the most used language. It is a depiction of 

instructions, symbols, arranged in rungs mimicking hardwire schematics, see Fig. 2.4. 

• Function Block Diagram (FBD): interconnected graphical blocks represent process 

flow and parameters, see Fig. 2.5. 

• Sequential Function Chart (SFC): interconnected graphical blocks represent process 

flow and parameters, see Fig. 2.6. 

• Structured Text (ST): a high-level language that resembles “C” or “Pascal”. It is a 

textual language rather than graphical as shown in Fig. 2.7. 

• Instruction List (IL): a low-level language uses mnemonic instructions; it resembles 

assembly. Mostly used in old PLCs. 

 

 

 
Fig. 2.4. Ladder Logic Diagram  

 



32 

 

 
Fig. 2.5. Function Block Diagram. 

 

 

 
Fig. 2.6. SFC Diagram. 
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Fig. 2.7. Structured text code. 

 

 

 

 

2.3.4 Structures and Organization of PLC Code Software 

To program or monitor a PLC ladder logic code, a particular code designer software, which 

is PC based, must be used. Code designer software (programming software) would enable users 

to create a PLC project and develop PLC programs to be deployed or downloaded to a PLC 

controller. Code designer software would enable developers to perform real-time monitoring 

and modification of any code running within a PLC. So, understanding the structure and the 

organization of a code designer software would help in understanding the PLC controller’s 

scanning and execution of the code.   

Though PLCs’ software shares similar basic functionalities and navigations, this chapter 

focuses on Rockwell PLCs and Studio 5000 software [15], Logix Designer version 33, because 

it was used in the conducted experiments, and because Rockwell is one of the major dominant 

shares of the worldwide PLC market [15]. Logix Designer software allows only one PLC 

controller to be configured and handled per project. A Logix Designer project is a PC based 

program that stores all related controller’s codes and information in one file, including any 

related code’s instructions, tags, and I/O module configurations. 

The main components of the project file, as shown in Fig. 2.8, are summarized as follows: 
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Fig. 2.8. PLC project organizer structure. 

 

 

2.3.4.1 Tasks 

A task is a collection of programs that are executed at any given or scheduled time. Whenever 

a task is executed, the related programs within the task are executed in the order listed or 

scheduled. Any tasks can be configured and set as follow: 

• Event tasks: These function as interrupts that get triggered by a specific event that 

occurs. An event runs once and then returns control to where the prior task left off. 

• Periodic tasks: get executed at specific, designated time intervals for a fixed duration 

of time. When triggered, a periodic task interrupts all other tasks with a lower priority 

until its operation is done and then allows the other tasks to resume where they left 

off. Periodic tasks are faster than the normal scan tasks. 

• Continuous task: The continuous task is widely used in programming PLCs because 

it is the only place where routines or programs run continuously. Each time the listed 

routines finish a full scan, they restart running immediately, as shown in Fig. 2.9. In a 

project, only one continuous task is allowed. The continuous task has the lowest 

priority and runs in the background. Any non-allocated CPU time not used by other 

background tasks is used by the continuous task to run its listed programs.  
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Fig. 2.9. A continuous Task behavior. 

 

2.3.4.2 Programs 

A project task handles several programs where each program can consist of several routines. 

In any created task, only one program runs at once. The way the routines are listed within the 

program specifies the order in which a program executes. For instance, the “Main Task”, as 

shown previously in Fig. 2.8, consists of several routines such as: Main, FBD, R01, R02, and 

ScanRoutine. In this example and according to the listed order, the Main Program is scheduled 

to execute first, R01 second, R02 third, and ScanRoutine last. Programs that are not assigned 

to a task are unscheduled. 

 

2.3.4.3 Routines 

Routines, within a program, are the code files that contain sequences of operations using logic 

elements and instructions. A routine can be created in any IEC 61131-3 standard programming 

languages [16]: LD, SFC, FBD, or ST. A project can handle several types of routines. A routine 

can be specified as one of the following types: 
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• A main routine: is the first routine to be executed within its specified program. In a 

main routine, other subroutines can be called to be scanned or executed.  

• A subroutine: is one that is called by the main routine or another routine.  

• Fault routine: is used in case a major fault occurs. Typically, when a PLC controller 

detects a major fault, it looks for a fault routine to execute; if the fault routine does 

not exist, the controller would be faulted and shuts down.  

 

2.3.4.4 Rungs 

In a ladder logic diagram code, each routine consists of a set of rungs or lines of code. Each 

rung can have several inputs, outputs, or other programming instructions. 

 

2.3.4.5 Tags 

Tags are text-based and meaningful names that are used to refer to the memory locations where 

data or values are stored. There are two scopes for tags: program (local) scope or controller 

scope. Program tags are defined and assigned locally within a program scope database which 

makes them only accessible by local routines that belong to the same program. For instance, 

“Parameters and Local Tags” shown in Fig. 2.10 are considered local tags that belong to the 

“MainProgram” scope. Any routines listed outside “MainProgram” cannot access them.  

A controller might have several duplicated local tags that carry the same name if each belongs 

to a different program scope. On the other hand, controller tags are global tags that are 

accessible by any routines within a PLC controller. For example, “Controller Tags” shown in 

Fig. 2.10 are considered global ones which means they must be uniquely and globally declared 

and not duplicated.  
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Fig. 2.10. Tags’ scope. 

 

 

Tag types can be based on physical addresses of I/O modules or can be memory-based defined 

ones with text-based description, see Fig. 2.11. Data types of tags can be configured as arrays, 

user-defined structures, and predefined structures (timers, controls, counters, etc.). Tags can be 

defined based on any of the following IEC 61131-3 atomic data types: 

 

 

 

Fig. 2.11. Variety of defined tags within ladder logic code. 
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• BOOL: a Boolean tag is a one bit that holds exclusively one of two possible states or 

values: a “1” or a “0”. A Boolean tag can be defined as a stand-alone or can be an 

element of predefined structure such as a BOOL array that combines multiple bits. 

• SINT: A tag Single Integer (SINT) of data type stores 8 bits of information.  

• INT: A tag of Integer (INT) data type stores 16 bits of information. 

• DINT: A tag of Double Integer (DINT) data type stores 32 bits (i.e., Word) of 

information. 

• LINT: A tag of Long Integers (LINT) data type stores 64 bits of information; double 

words. 

• REAL: A tag of “REAL” data type stores signed 32-bit floating-point decimal values. 

For Logix 5000 controllers, DINT data types use less memory and execute faster than other 

data types [17]. Also, a tag with direct reference element within an array (such as Array[20]) 

uses less memory and executes faster than an indirect reference one (such as 

Array[Index_Array]). 

 

2.3.5 PLC Code Scanning and Execution 

Once the design of the code is done, it should be downloaded to the PLC. The PLC compiles 

the file and verifies it. If all are valid and the PLC is back to “RUN” mode, the controller starts 

scanning the code of all routines in a continuous matter, unless specified otherwise. a PLC 

continuously monitors, in real-time, all related physical I/Os, internal tag input, and code 

elements, and it updates outputs accordingly, which is called a PLC scan cycle. 

Most of the controllers continuously scans each routine one at a time. It starts scanning or 

executing from the first top rung going from left to right all the way to the bottom of the routine. 

In order for a controller to execute and update any available output instructions or code 

elements (such as additions, counters, timers, etc.), all rung conditions, such inputs or 

comparative instructions, in the associate rung must be “TRUE”. If all rung conditions are not 

“TRUE”, then the controller stops scanning the rest of the rung, i.e., it doesn’t update any 

outputs, and moves on to scan the next available rung.  

The time a PLC spends in executing all the code within a routine during a scan cycle is called 

scan time. 

 



39 

 

2.3.6 PLC Network Architecture 

Data communication among PLCs and field devices can be established via industrial 

communication networks. Those networks have to be reliable, real-time, and accurate to handle 

data monitoring and data controllability among various devices. Originally industrial networks 

started as point-to-point communication link, limited and straight forward. A good example of 

that is a serial communications link. A transmitted signal (carried from the PLC to other devices 

or actuators i.e., an output) or received signal (sent to the PLC from a sensor i.e., an input) – is 

connected via point-to-point connection or terminal cards. Although it is limited, a point-to-

point serial communications link is less vulnerable to security threats. However, with the 

advancement of technology and emerged needs, industrial networks evolved to complex levels 

such as Local Area Network (LAN) and Wide Area Network (WAN).  Some industrial 

networks can handle diagnostics and power up interconnected related devices in addition to 

carrying signals from/to PLC via I/O modules or scanners like DeviceNet. Field devices, for 

instance, like I/O devices or modules have become more networked and software (firmware) 

based. I/O module devices are now connected, locally, or remotely, to industrial networks to 

get better modularity, reduced cost, less wiring –   as shown in  Fig. 2.12 and Fig. 2.13 - easy 

and quick installation or maintenance, and good diagnostics [18] [19].  

 
Fig. 2.12. DeviceNet Bus with Scanner and ArmorBlocks [19]. 
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With that advancement of industrial communication networks, vulnerability to cyber attacks or 

threats increases. Generally, industrial networks consist of I/O devices, Scanners’ modules, and 

network cables. A PLC communicates to other sensors, actuators, or devices via one of the 

above networks. DeviceNet, which is widely used would be a good example of such 

advancements. DeviceNet consists mainly of the following modules: DNET Scanner, 

ArmorBlock/ArmorPoint, and Flex I/O [19], as shown in Fig. 2.14. Each module has its own 

firmware that could be vulnerable to security threats. 

 

Fig. 2.13. DeviceNet Architecture [19]. 

 

 

 
   (a)                                                                               (b) 

 

Fig. 2.14. (a) and (b) shows DeviceNet Bus that reduces wiring and costs [19]. 
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Major advanced PLCs, presently, can talk to all systems and devices, including safety devices, 

via industrial networks - such as Ethernet/IP. GuardLogix5570 PLC, for instance can talk to 

all safety devise and regular field ones via Ethernet/IP, as shown in Fig. 2.15. 

 
Fig. 2.15. PLC Architecture of Rockwell GuardLogix [17]. 

 

2.4 Conclusion 

This chapter covered the background of PLCs and associated technology, including all major 

components. It presented a good overview of PLCs and associated components.  A special 

section was introduced that discussed fundamentals of PLCs, their functionalities, and related 

hardware. 
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Chapter 3  Literature Review: ICS and PLC-BS 

Vulnerabilities and Threats 

3.1 Introdution 

 

Cyber-attacks and threats are not limited to PC anymore.  Attacks could utilize vulnerabilities 

in any associated components of ICS including PLCs. The attacks could be directly designed 

to infect PLCs, or they could indirectly do serious damage to any PLC-BS components. 

3.2 Overview: ICS and PLC-BS Threats 

When attacks are launched against ICS systems, all associated components, including PLC-

BS, must be of a concern. Attacks could utilize ICS vulnerabilities, to gain access to PLC-BS 

components such as industrial networks, field devices, SCADA servers, and HMIs. Attacks 

that infect Windows computers, for instance, would be a threat to PLCs as well since most of 

the advanced, modern, HMIs are PC or server based. PC based HMIs are frequently used to 

access, monitor, and edit PLC code through the installed PLC code design software, like Studio 

5000 software. The “WannaCry” malware, that infected windows computers, was able to find 

its way to ICS sector  [20]. “WannaCry” was able to use some computers as a bridge to access 

and compromise well protected industrial networks, as shown Fig. 3.1. Wannacry infected 

several industrial computers in different sectors, see Fig. 3.2.  

 
Fig. 3.1. WannaCry penetrating to ICS networks [20]. 
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Fig. 3.2. Breakdown of ICS sectors infected with WannaCry [20]. 

 

According to Kaspersky ICS CERT the attacks against industrial infrastructure computers 

could affect SCADA servers, OPC, HMIs, networks, historians, and workstations [21]. 

ICS attacks have been globally targeted by adversaries and on the rise across several industrial 

sectors are on the rise [22], especially after being remotely accessible and connected to the 

Internet  [5]. The concerns about cyber threats are increasing since they are not limited to 

manufacturing systems but also targeting more critical infrastructure sectors [23].  For instance, 

the US Department of Homeland Security responded to 25 water cyber-security incidents in 

2015 [24]. According to Kaspersky ICS CERT, a surge in ransom attacks infected industrial 

companies as well as other organizations and some of the cases had serious consequences [25] 

[26]. The percentage of attacks against ICS increased by 0.4 p.p. more than that reported in 

2020 [21]. A Kaspersky Lab study, published in 2019, shows the percentage of identified 

vulnerabilities of each PLC-BS component, as shown in Fig. 3.3.  

 

Fig. 3.3. Percentage of vulnerabilities identified among PLC-BS components [27]. 
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The percentage of vulnerabilities of each component is identified as follows [27]: 

• Associated Engineering software, mainly windows OS and third-party software, were 

exploited. Hackers utilize Windows based programs to initialize attacks on other ICS 

components. 

• Networking was 15% because more Ethernet based systems are becoming widely used. 

That increases the vulnerabilities within communication, especially if it is remotely 

accessible.  

• HMIs and DCS vulnerabilities are increased due to the increase of remote access and 

the use of Windows based platforms or architecture. 

• PLCs’ threats are increasing due to the increased need for remote access, more 

attractive to adversaries looking for creating damage, and affected by ICS malware. 

The published report shows that the number of identified vulnerabilities among PLC-BS 

components was increased to 509 in 2019 compared to 415 in 2018 and 322 in 2017 [64]. 

More than half of those vulnerabilities were identified as high or critical risk level [64]. 

 

3.3 History of Major ICS Cyber Incidents 

The following is a summary of major documented attacks against ICS since 2000: 

Table 1: List of ICS Cyber Incidents 

Year Name Details 

2000 Maroochy  Adversary disabled alarms and made the pumps release more than 

250,000 gallons of untreated sewage damaging wildlife and rivers 

[8] [28]. 

2008 Turkey cyber-

intrusion  

Turkey Pipeline explosion has been attributed to ICS failure or 

intrusion [29] [30] [31]. 

2010 Stuxnet  Infected PCs, networks, WinCC HMIs, Step 7 PLC, and created 

damages to nuclear centrifuges [32] [33] [34] [35]. 

2010 Night Dragon   Attacked Energy and petrochemical companies [36]. 

2011 Duqu  Data-stealing malware [37] [38]. 

2011 Flame  Data-stealing malware [38] [39]. 

2011 Gauss  Collected and stole data from compromised devices [40]. 
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2011 Gas Pipeline 

Intrusion  

Attacked 23 U.S. natural gas pipeline [41]. 

2012 W32.DistTrack 

“Shamoon”  

Targeted Saudi Aramco and RasGas: it was information-stealing 

malware with destructive capabilities [42]. 

2013 New York 

Dam  

Attempts to manipulate SCADA equipment [43]. 

2013 Havex (Oldrea) Gathered server information of ICS and enumerated OPC tags [44]. 

2014 German Steel 

Mill  

Caused infrastructural damage and multiple control system failures 

[45] [46]. 

2014 BlackEnergy  Compromised many ICSs and targeted HMIs [47] [48]. 

2014 Crouching Yeti 

Dragonfly 

Energetic Bear  

Infected more than 2,800 victims including 101 organizations [49]. 

2015 Ukraine Power 

Grid  

Cyber-attack on Ukrainian power grids and other institutions [50] 

[51]. 

2016 Kemuri  Manipulated The water utility’s SCADA platform including 100s of 

PLCs that control valves [52]. 

2016 Vairant of 

Shamoon  

Affected Saudi civil aviation agency and other organizations [53]. 

2016 CrashOverride  Attacked Ukrainian power grids including manipulating SCADA 

systems. It was more severely than the attack occurred in 2015 [54] 

[15]. 

2017 NotPetya  One of the most destructive cyber-attacks against critical 

infrastructure that caused billions of dollars in damage across many 

countries [55] [56] [57]. 

2017 WannaCry Attacked numerous ICS -various manufacturing companies, oil 

refineries and energy sectors - through enterprises’ local networks 

[20]. 

2017 Dragonfly 2 A destructive and intelligent information gathering tool that attacked 

energy sector and other organizations [58] [59]. 

2017 HATMAN 

TRITON 

TRISIS  

Targeted ICS systems; specifically, Triconex safety PLCs by 

Schneider Electric’s [60] [61] [62]. 

2018 SPECTRE 

Meltdown  

Stole information, credentials, and launched botnet. Industrial PCs, 

networks, SCADA servers, etc. Reported products: ABB, Cisco, 

Yokogawa, Siemens, and Schneider Electric [63] [64]. 

2018 SamSam 

MSIL/Samas  

A Ransome targeted critical infrastructure and industries [65]. 

2019 Attacks by 

Xenotime  

Targeted electric utilities and energy sectors in the United States and 

the Asia-Pacific region [66] [67]. 

2020 PoetRAT  Targeted SCADAs of Azerbaijan energy sectors [68] 
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2020 RagnarLocker  A ransomware that targeted critical infrastructure sectors and 

organizations [69] [70]. 

2021 Colonial 

Pipeline 

Cyberattack  

A ransomware that stole data and disrupted pipeline operations 

including HMIs [71] [72]. 

2021 Ghost 

ZuCaNo  

Attacked SCADA systems of several water sectors in USA [23]. 

2022 Log4j 

Exploitation  

Exploited vulnerabilities in the Apache Log4j library including 

associated SCADA devices [73] [74]. 

 

3.4 Recent Statistics on ICS Threats  

According to Kaspersky Lab [75], the percentage of blocked malicious attacks tried to attack 

ICS computers in 2021 increased from 38.6% to 39.6%, i.e., increased by 1 p.p. – see Fig. 3.4. 

More data of the blocked threats are presented as shown in Fig. 3.5. The percentage of the 

blocked malicious attacks targeted oil and gas sectors rose by +3.5 p.p. during the second half 

of 2021, as shown in Fig. 3.6. The major threat resources of attacks were internet based, 

removable devices, and emails, as shown in Fig. 3.7. The sources of attacks vary from one 

country to another. For instance, in Australia the percentage of attacks coming from email 

clients were higher than that of removable devices, see Fig. 3.8. The types of the blocked threats 

of ICS computers are shown in Fig. 3.9 [75]. And the types of OT industries that were targeted 

by attacks, in 2021, are shown in Fig. 3.10 [76]. 

 

 

Fig. 3.4. Percentage of blocked malicious attacks against ICS [75]. 
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Fig. 3.5. Percentage of blocked malicious attacks against ICS through 2018-2021 [75]. 

 

 

 
Fig. 3.6. Percentage of blocked malicious attacks against different PLC-BS sectors [75]. 

 

 

 

Fig. 3.7. Percentage of major threat sources [75]. 
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Fig. 3.8. Percentage of sources of threats [75]. 

 

 

 

 

 

 

 

Fig. 3.9. Percentage of threat types [75]. 
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Fig. 3.10. Breakdown of attacks against ICS industries [76]. 

 

According to the Trend Micro Zero Day Initiative report published in 2019 [77], vulnerabilities 

of SCADA systems were high during 2015-2019, as shown in Fig. 3.11. The vulnerabilities 

were found in several industrial devices, software, and types across different vendors. For 

instance, In 2015, vulnerabilities were found in Schneider Electric’s ProClima software and in 

2018  more vulnerabilities were found in Omron HMI software packages CX-Supervisor, see 

Fig. 3.12. 

 
Fig. 3.11. Numbers of vulnerabilities found in SCADA systems [77]. 

https://www.se.com/ww/en/product-range-presentation/2560-proclima?parent-category-id=5800
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Fig. 3.12. Vulnerabilities found in PLCs and HMIs software packages [77]. 
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3.5 A Review of PLC-BS Vulnerabilites and Threats 

Based on the previous statistics, vulnerabilities of PLC-BS are the main reason of successful 

attacks. PLCs are not capable of handling extensive computation required to detect malware or 

malicious attacks. By gaining access to PLCs, adversaries can create serious damage to PLC-

BS. Limited efforts have been made to detect threats within PLCs, such as PLCs’ OS and PLCs 

code.  

[78] [79] show that bad code practice and improper or poor ladder logic design would increase 

the risk of vulnerabilities within PLC code. Inexperienced programmers are more concerned 

about the functionality of automated devices than vulnerabilities or poor code practices. 

[79] shows several bad code practices that could be exploited and risk the safety of PLC-BS. 

[81] provided ladder logic bombs (LLBs) where a ladder logic code was injected to execute 

malicious PLC code that manipulated receive status of field devices. The code could also be 

utilized to initialize DoS attacks. [80] presented a PLC-Blaster worm that targeted Siemens 

PLCs, SIMATIC S7-1200. The worm was hosted on Siemens PLCs, modified PLC code, 

manipulated outputs, and scanned associated networks to target other PLCs. [81] presented 

attack model that was able to access a Siemens PLC by using a SNMP Scanner and a SOCKS 

Proxy. The attack was able to modify the associated PLC program. [82] presented an external 

non-PLC program to verify PLC code integrity before loading it to the associated PLC. The 

research work introduced examples of bad code practice that could be exploited by adversaries. 

Racing conditions, duplicate or missing outputs, unused tags were provided as examples of bad 

code practice. [83]  presented CLIK, a PLC logic attack. The attack consisted of bypassing 

security measures of a PLC, accessing and getting a binary copy of its code, decompiling the 

stolen binary code, and injecting a malicious code into the stolen one. Once the malicious code 

was injected, it was transferred and downloaded, as binary code, to the exploited PLC. [84] 

presented network attacks that manipulated memory values of PLC’s inputs. [85] presented 

malicious attacks on PLCs, “Denial of Engineering Operations”. The attacks were developed 

to access PLC code, retrieve a copy of it, modify it, recompile it, and downloaded back to the 

designated PLC. The process was accomplished without being detected by associated code 

designer software. As a countermeasure solution to detect malicious manipulations, a ladder 

logic decompiler termed ‘Laddis’ was introduced. Attacks in [86] were able to manipulate 

inputs and outputs of Siemen S7 PLC and remotely stopping it. [87] [88] introduced attacks 

that targeted Siemens S7 PLC code by retrieving the running ladder log code, decompiling it, 

manipulating it and transferring it back to the PLC in bytecode format. [89] presented attacks 
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that targeted Siemens S7-300 PLCs and associated TIA data.  The authors injected interrupt 

code to attack the designated PLC Organization Block.  [90] presented ‘Shade’, a deep packet 

inspection (DPI) technique. Shade employs certain algorithm techniques to monitor PLC code 

and detect any evasion injected into designated ICS networks. [91] presented a ‘SABOT’ tool 

that instantiated malicious payloads on Siemens PLCs. The payloads could be arbitrary 

manipulations of the targeted PLC code. [92] presented “Harvey” rootkit that exploits PLCs’ 

firmware vulnerabilities to modify associated logic instructions. The malware was capable of 

monitoring and modifying PLC inputs received from field devices. Another rootkit to 

manipulate PLC’s I/O values was introduced in [93]. In [94] a NuSMV model to verify the 

integrity of PLCs’ function blocks, FB, code was introduced. [95] presented systematized 

knowledge of PLCs’ threats, vulnerabilities, and recommended countermeasures. PLCspecif 

was introduced in [96] to validate and improve PLC programs. [97] demonstrated a 

methodology based on ‘Cone of Influence’ and NuSMV models to verify PLC programs. In 

[98] solutions were provided to verify safety program. [99] addressed a method to verify the 

integrity of PLCs’ structured language programs. [100] [101] [102] introduced methods and 

techniques to verify and validate running PLC programs. [103] introduced ‘Arcade’, a 

statistical tool, to evaluate different PLC programs. [104] introduced HyPLC, a compilation 

and verification tool to provide guarantee proper correctness of the PLC programs. 

 

In addition to code vulnerabilities, PLCs are vulnerable to OS attacks. Like any other OS, 

PLCs’ OS or RTOS (real-time operating system) have their own vulnerability that could be 

exploited by adversaries especially if they are connected to outside networks or integrated with 

IoT network. The following are a couple of examples of vulnerabilities found in two major 

RTOS in the PLC domain. VxWorks, a RTOS for so many PLCs – such as Rockwell PLCs- 

and continuously functioning devices, was found vulnerable according to Armis researchers 

[105]. More than 2 billion devices run on VxWorks including aerospace, robots, industrial 

devices, etc., and roughly about 200 million devices among them appear to be vulnerable 

according to Armis researchers [106].  Exploitation of the exposed vulnerabilities would cause 

sever malfunctioning. Though Wind River, the developer of VxWorks, created a patch, it 

would not be easy to be deployed by companies. Nucleus RTOS is a real time operating system 

developed by Mentor Graphics, acquired by Siemens in 2021. In 2021 several vulnerabilities 

were found in Nucleus RTOS that were reported by Forescout and Medigate Labs [107]. The 

vulnerabilities can be exploited to take over a PLC or crash it.  
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Unlocked or unprotected PLCs create another vulnerability concern. Having an access point to 

a PLC allows user to upload any malicious code to the PLC, manipulate the current running 

one, or even upload new firmware. PLCs typically do not check whether the uploaded code is 

from a verified trusted source or not. Even with password protection, PLCs do not have enough 

defense mechanisms to stop attackers from retrieving or stop passing passwords [85] [91] [92]. 

[9] [11] [108] presented Stuxnet malware that severely attacked PLC-BS. Stuxnet was able to 

maliciously spy, attack, compromise, and even exploit other field devices to initialize attacks 

on other systems. By exploiting Siemens software and associated programs (HMIs - WinCC, 

PLC codes -Siemens Simatic Step7, PCs - Windows, etc.) and faking values, Stuxnet severely 

affected crucial field devices - taking advantage of multiple Windows zero days vulnerabilities 

[108]. Even though it was a malware that was specifically customized to target certain Siemens 

SCADA systems and programs, Stuxnet is just a typical threat that PLC-BS might face. In 

addition to Stuxnet attac, so many other attacks were carried out by other threats such as Flame, 

Guass, Duqu, Wiper, and BlackEnergy malware [39], [1]. There are more than 50 new Stuxnet-

like attacks on SCADA threats discovered [109] [9] [10] [110]. Since Stuxnet’s appearance, 

PLC-BS have attracted the attention of the hacker crowd.  

Other vulnerabilities are related to PLC-BS networks. With the advancement of technology 

and the increase demand for remote access, PLC-BS networks become less obscure to hackers 

[111]. A Modbus stager tool was used to deploy a payload program through Modbus 

vulnerability [112]. In [80] the developed worm can scan PLC networks and target other S7 

PLCs. In [113] several attacks on industrial networks were introduced including Denial of 

Service (DoS) and command injection. Exploiting vulnerability in Siemens S7 PLCs was 

addressed in [114]. [30] presented Packet manipulation such as latency, spoofing, 

eavesdropping, and deletion. [115] presented attacks on the communication stack: network 

layer, transport layer, application layer and the implementation of protocols such as TCP/IP, 

OPC, and ICCP. [116] presented attacks on industrial networks and methods to detect 

associated networks intrusion. 

[117] [118] presented ARP Spoofing, password attack, and DoS. [11] presented Backdoors and 

Holes in Network Perimeters. [119] presented several industrial network intrusions and 

provided a detection solution using a DPI method. In [120] two attacks were introduced against 

SCADA: reply packet attack and Man in The Middle (MITM) attack. [121] Introduced several 

attacks against Siemens PLC and PROFINET test beds such as MITM cyber-attacks. Packet 

manipulation of logic was addressed in [90]. Detecting intrusion of SCADA networks was 

addressed in [122] [123] [124]. Recommendations and guidelines were provided in [125].  
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[126] presented Communications jamming, blocking, or hijacking; MITM. [127] presented a 

Controller-Aware False Data Injection (CaFDI) attack against ICS networks. CaFDI targeted 

associated PLC’s inputs to generate malicious attacks.  

 

 

3.6 Conclusion 

This chapter presented a summary of major ICS cyber incidents that occurred since the year 

2000. The chapter provided recent statistical reports about ICS vulnerabilities and threats. A 

special section was introduced that discussed all direct attacks against PLCs and the literature 

review of related research works. 
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Chapter 4  PLC Code-Level Vulnerabilities 

4.1 Introduction 

Much attention is usually directed toward the hardware portion of ICS or SCADA systems such 

as: industrial components, peripheral devices, or networks. Research works are more into 

external attacks against PLC-BS like network intrusion, compromised SCADA devices and 

DoS, but less attention is given to the ladder logic code vulnerability within PLCs [128]. It has 

been assumed that ladder logic code is secure and safe as long as the network is healthy and 

protected from malware or intruders. But that is not sufficient since the ladder logic itself has 

its own overlooked or unnoticed vulnerabilities. This chapter provides an overview of some 

critical vulnerabilities within the PLC ladder logic code or program and recommends 

corresponding steps or methods to keep PLCs safer and more secure. The chapter focuses on 

specific ladder logic code vulnerabilities and weak points that might be exploited by malicious 

attacks. Those weak points could be a result of intentional malicious pieces of code embedded 

within the ladder logic code or inadvertent ones such as bad code practices or human errors.  

Indeed, not many solutions exist to help secure PLCs such as certificateless cryptography [129] 

or intrusion detection through expected response times under normal operating conditions such 

as [130] and [131]. 

 

4.2 Ladder Logic Code Vulnerabilities 

Any ladder logic code that is not well structured and designed increases the risks of 

vulnerabilities and security holes; even though the programmer is conforming to the company’s 

standards and recommendations. And that could be more aggravated if the logic is not written 

by professionals, which is mostly the case. Standards are very subjective and are mainly 

company oriented. Such standards are mainly created and instituted to keep systems 

functioning, well optimized, and safe, but less attention is given to security threats and 

vulnerabilities. Such cases create a back door to hackers or could inherit the PLC programs 

insecure and dormant or unnoticed threats.  

The following are some main examples of bad coding scenarios that any programmer should 

avoid to reduce or eliminate any code vulnerabilities: 

• Using duplicated instructions: reusing certain operands – Such as: OTE, counters, 

timers, and JSR. – more than once in the ladder code leads to undesired result. Fig. 4.1 
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shows an example of a duplicated OTE operand - Y1. The duplication in this logic 

makes Y1 triggered during its unintended time. The reason is that Y1 is going to be 

turned ON in the first rung and right away turns OFF if X2 is enabled. So, it goes ON 

or OFF based on the scanning result of the rung it belongs to. An unintended fluctuating 

value of an operand would make it hard to debug or notice. Keep in mind that 

duplicating certain outputs would not be allowed in some PLCs, but some others would 

allow it. 

 

 
Fig. 4.1.  Duplicating OTE operand. 

 

• Snooping: a ladder logic code that can be written to log certain critical parameters and 

values to be leaked stealthily for spying purposes without affecting the logic flow and 

purpose. That can be done by utilizing array instructions like FIFO and some other 

arrays-based ones; e.g. “ADD ON” user defined instructions. Such instructions can be 

added unnoticed to the code and do not raise any suspicious or unusual behavior.  

 

• Missing certain coils or outputs: occurs when a rung is missing a specific output coil 

(such as OTEs, latches or sets, unlatches, etc.)  which other tag(s) depends on; see Fig. 

4.2. Missing coils increases the risk of vulnerability threats. It is a warning sign that 

someone could be deliberately tampering with logic to deviate from certain critical 

values; risking the system to make wrong calls and decisions. Fig. 4.3 shows the proper 

way to handle OTE instructions where each rung has its proper pre-condition and output 

operands. Y11, an OTE instruction, depends on the value of the normally open 

instruction Y2. Not having Y2 instruction (deleted or replaced by non-useful false 

instruction) as a precondition to Y11, makes Y11 rung-condition-out False (Y11 always 

OFF) hard to notice. 
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Fig. 4.2. Tag y2 is missing related input(s). 

 

 
Fig. 4.3. Outputs instructions are properly energized. 

 

• Bypassing: either by manually forcing the values of certain operands while the ladder 

logic is online or by using empty branches, jumpers, as shown in Fig. 4.4. 

 

Fig. 4.4. Using an empty branch as a jumper. 

 

• DoS: the user can write online or upload a malicious piece of ladder logic to the PLC 

that might be activated or triggered at a certain time. That could severely slow down 

the PLC, halt it, or cause major faults. The operator can’t access the ladder logic, edit 

it, or monitor values in real-time. The attack can be done through: 

o Coding a repetitive SBR calls via JSR instructions. 

o Coding infinite loop via jumpers. 

o Nest timers and jumpers. 

o Improperly inserting MCR - Master Control Reset - instructions that de-

energized non-retentive instructions like OTE coils. 
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• Coding certain ladder logic that might lead to fatal errors or major faults. Such faults 

might require restarting the PLC or re-uploading correct clean ladder logic which leads 

to data loss and temporarily shut down to the whole automated system associated with 

that PLC. The recovery could be time consuming and might cause damage to some 

meticulous industrial activities or devices; in addition to data loose of critical 

parameters or values. One of the solutions for such problems is to monitor jumpers and 

other looping routines using counters and timers. If the loops are going on more than 

expected, then warn the operator and halt certain suspicious routines. 

 

• Using hard coded values: in certain situation using hard coded values or parameters 

endangers the process or its related program; see Fig. 4.5 . Numeric values are easier to 

modify than those driven by continuous feedback. Modification can be on purpose, 

inadvertent, or by malicious attacks. For instance, a programmer by mistake might enter 

a wrong value in the database table where the values of the instructions are easily 

displayed and accessible; that could also happen by toggling the values of the 

instruction displayed in the rung. Fig. 4.6 shows a solution that can keep source B 

numeric value updated even if it is modified inadvertently by a toggle or by updating 

the values in the PLC database table. 

 

 
Fig. 4.5. Numeric values are vulnerable. 
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Fig. 4.6. Compare real-time numeric values not hard coded ones. 

 

• Racing: occurs when two codes or operands of logic are racing against each other 

leading to inconsistent results and can be used to create a threat that could damage 

devices. Misplaced operands within the same code or even one rung - such as the racing 

scenario in timers – is a good example that often happens. Fig. 4.7 shows that having 

the done bit of the timer (tmr1), tmr1.DN, before the branch causes a racing problem if 

the timer’s accumulator reaches the value of the Preset one’s (assuming X1 is always 

ON). In other words, whenever the timer (tmr1) is done, it is reset again and the Valve01 

is energized because the precondition, tmr1.DN, is false. There is always a chance the 

Valve01 will never get turned off or be de-energized. That would make it hard to locate 

the problem because the logic looks legitimate. The proper correction is shown in Fig. 

4.8 . 

 
Fig. 4.7. Racing condition. 
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Fig. 4.8. Racing condition solved. 

 

 

 

• Lack of thorough diagnostics and alarm messages: when there are no detailed and in-

depth alarms, diagnostics, or preconditions the devices might be at great risk because 

the operator will only notice the damage after it occurs. Overall, the result is device 

damage or time delay in recovering, debugging, or maintaining. For instance, not 

setting an alarm message or warning for motor overload before enabling or while 

running it could damage the motor especially if the physical overload switch is 

compromised, missing, or malfunctioning.   

The problem will be more aggravated if the compromised device is critical – e.g., 

nuclear reactor – and yet lacking critical alarms or warnings. Another concern is when 

there are sufficient alarms and warning messages that can prompt the operator, but they 

got disabled either through another wrong or malicious piece of logic or by external 

user who manages to get through the code. A good practice is to add a ladder logic code 

that can simulate all faults’ scenarios and check their status alive before running 

production. Another good practice is to create a heart-beat pulse bit – flashes every 

50ms – that is synchronized with the alarms program section. 

 

• Compiler warning: overlooking certain PLC compiler warnings would be critical since 

they might be a real threat; e.g. a compiler warns about duplicate outputs, see Fig. 4.9. 
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Fig. 4.9. Compiler warnings. 

 

• Unused tags or operands: dormant malicious code or external attacks might take 

advantage of any unused tag because they are already predefined and using them will 

not trigger or not raise any flag. So many PLC programmers leave unused tags in the 

PLC database. Any malicious attack might exploit unused tags to trigger signals that 

might activate malicious output to interrupt or manipulate data. That can be done by 

utilizing instructions (timers, jumpers, etc.) that can overload the PLC OS, slow it 

down, truncate critical data, or generate certain datatype faults and errors. 

 

• Program Mode: keeping the PLC in “Program Mode” or “Unlocked Mode” allows 

others to upload wrong or malicious ladder logic code; jeopardizing the whole 

automated system. The user can even wipe out the whole ladder logic or upload any 

suspicious one. Also, keeping the PLC in “Program Mode” makes the PLC vulnerable 

to any code manipulation with no need to delete or overwrite the whole program. It 

allows others to do online editing for ladder logic (add or delete pieces of code or data) 

while the ladder logic is running. That can be done by any user without being noticed 

since there will be no need to do a critical ladder logic code upload to the PLC; only 

critical uploads usually cause systems to stop and reset.  

 

• The lack of authentication: before uploading new or modified ladder logic code to the 

PLC no authentication is conducted. Attackers can use this to upload malicious code, 

vulnerable code, or improper code or they can even compromise the PLC. To avoid 

that, comparison tools should be used to ensure the integrity of critical pieces of code. 

The comparison is to be made against a valid verified program.  
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4.3 Ladder Logic - Backdoors 

Many companies and vendors assume that ladder logic is secure and not accessible by hackers 

and intruders because the PLC networks are usually air gapped. But that is not true for the 

following reasons: 

• Random threats: the malicious attack could be done by malwares that are designed to 

affect certain PLC brands. A malware could be deployed remotely, by USB, or locally 

by infected PC on the PLC network. Such attacks could be initialized on purpose or 

inadvertent. Isolating PLC networks completely from others is not realistic because 

there is always a need to connect a PC or HMI – which could be infected - to a PLC 

where a programmer needs to monitor or edit ladder logic.  

• Internal threats: could be because of upset employees, bad coding practice, infected 

logic written on infected PC, or intentional attacks; e.g. give remote access to hackers, 

open certain ports, or insert infected USB. 

• External threats: external stealthy access to the PLC code to either keep a malicious 

code dormant and trigger it at a proper time or to be a "hit and run" scenario. Dormant 

pieces of logic could be used to steal sensitive information and parameters which could 

be used later on to sabotage or damage automated systems. 

4.4 Conclusion 

Vulnerabilities of PLCs are growing, leading to an increasing risk of threats and attacks. There 

are few works and scattered local efforts involved in improving PLC ladder logic code, but 

challenges remain. In this chapter we have solely focused on the code level vulnerabilities of 

ladder logic that resides and runs on PLCs. The chapter provides a summary and details of 

some major fundamental ladder logic code vulnerabilities and threats. Those vulnerabilities 

might be existing in any typical ladder logic: unnoticed or unknown — never thought of. 

Ladder logic code vulnerabilities could be dormant threats that can be triggered at any time 

risking the whole automated system that is associated with. Even though code vulnerabilities 

could occur because of bad coding practice, some might be unknown even to professional 

programmers.  

In addition, we have provided solutions for the vulnerabilities mentioned above. Following the 

solutions and recommendations provided would highly mitigate, reduce, or eliminate malicious 

attacks or threat.  
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Chapter 5  Programmable Logic Controllers Based Systems 

(PLC-BS): Vulnerabilities and Threats 

5.1 Introduction 

Though PLC-BS are reliable, real-time devices that are widely used in most automated systems 

and industrial facilities, they are becoming a big concern. It has been proven that PLC are 

vulnerable like any other OS based systems, not mention that PLCs have limited resources and 

OS. PLCs are not designed to prevent and scan the code for malicious behaviors or stealthy 

attacks. Devices associated with PLCs such as HMI, peripherals and I/O devices, and networks 

are vulnerable and would risk PLC-BS.  A study by Kaspersky Lab 2010 proved a new 

sophisticated level and era of attacks against PLC-BS software has started. Stuxnet was the 

first to include a PLC rootkit [108]. Stuxnet was able to maliciously spy, attack, compromise, 

or even exploit other machines to initialize attacks on other systems [9] [11]. It demonstrated 

a real sophisticated cyber security attack that catastrophically affected several areas of PLC-

BS. By attacking the software (HMIs - WinCC, PLC codes -Siemens Simatic Step7, PCs - 

Windows, etc.) and faking values, Stuxnet severely affected crucial field devices taking 

advantage of multiple Windows zero days vulnerabilities [108]. Even though it is a very 

customized malware targeting Siemens SCADA systems, Stuxnet is just a typical threat that 

PLC-BS might face; especially if there are any cyberwarfare attacks. In addition to Stuxnet 

attack [108], so many other attacks were carried out by other threats such as Flame, Guass, 

Duqu, Wiper, and BlackEnergy malware [39], [1]. There are more than 50 new Stuxnet-like 

attacks on SCADA threats discovered [109]. Since Stuxnet’s appearance, PLC-BS have 

attracted the attention of the hacker crowd.  

In this chapter, we present critical PLC-BS security vulnerabilities and potential polices that 

can mitigate some of the threat.  

5.2 PLC-BS Threats and Vulnerabilities 

Nowadays, PLCs are more interconnected to many other systems and devices, see Fig. 5.1 to 

improve data monitoring. But with more connections, the risk of attacks becomes higher, and 

more vulnerabilities would be exposed and exploited.  
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Fig. 5.1. Connections of PLC-BS to corporate networks and Internet [9]. 

 

The following is a categorization of the vulnerabilities that could be exposed and exploited in 

any PLC-BS: 

• PLCs code vulnerabilities.  

• PLCs vulnerabilities. 

• HMIs and DTUs vulnerabilities. 

• Field devices vulnerabilities. 

• Network vulnerabilities. 

• Network segmentation vulnerabilities. 

 

5.2.1 PLC Code Vulnerabilities. 

PLC code vulnerabilities has not been a great concern as that of network related ones. 

Companies, developers, and programmers have the tendency to believe that PLC code and 

associated programs are safe and secure since there are not connected to the internet or isolated 

from network intruders. But that is not correct. PLC code or a program can carry within 

nefarious destructive threats and vulnerabilities that hackers or regular disgruntled users might 

exploit. The vulnerabilities come from the way the code is written or designed. The following 

are some typical examples: 
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• Manipulated or missing faults messages: a malicious code can disable or suppress 

certain alarms. Basically, the manipulated logic code could stealthily deactivate critical 

faults, alarms, related logic code, or parameters. By that, operators would not notice 

any ongoing problems unless the system is down, i.e., recognizing threats after the 

damage occurs [78] . 

• Disabling Outputs: that occurs when a condition-out rung or certain constructive tags, 

such as OTE instructions, get disabled or do not get scanned. For instance, hackers 

could add two Master Control Reset instructions (MCRs), as shown in Fig. 5.2, to 

disable several rungs and disable certain instructions. Once the MCR instruction is 

disabled, “Light” and “Light1” would be OFF regardless of the status of corresponding 

precondition instructions, “AB” and “CC”. 

 
Fig. 5.2. Disabling outputs when MCR goes OFF. 

 

 

• Customized Function Blocks and ADD-ON instructions: user designed instructions, 

such as “ADD ON” instruction, can get very complex and hard to track. Hackers would 

exploit such instruction by tweaking them or add malicious code to them. Add ON 

instruction should be organized, certified, and continuously monitored by a company, 

protecting them with password would be a good choice if it is possible. 

• Overflow: occurs when an instruction or an operand parameter length of input or output 

do not match what the PLC is expecting. It usually occurs because of bad code practices 

or malicious attacks trying to manipulate parameters [78] . 
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• Duplicated or misplacing certain instructions: duplicating or using certain instructions 

within the same routine or program, would result in unpredictable behavior, which in 

return risk associated devices and processes. Duplicating certain instructions would 

increase the debugging time [78]. Using the same timer within the same code would 

make that timer useless and unpredictable, see Fig. 5.3. Another example, if an MCR 

zone is nested within another MCR zone that would result in undesirable results. 

 
Fig. 5.3. Duplicating timer instructions. 

 

• Unused tags: defining tags in the controller database that are not used in the logic could 

increase the level of threats; especially if the tags are not driven by a well-defined ladder 

logic or are for “ADD ON” or predefined instructions. 

• Missing certain coils or instructions: can result in undesired behaviors. A user can 

exploit such situations to add an improper output that could severely affect the logic 

code and the associated controlled hardware. For example, missing an MCR instruction 

in a code that has several ones could lead to undesirable and dangerous code behaviors 

since MCR instructions must work in pairs. 

• Bypassed instructions: That would be implemented by inserting an empty parallel 

branch, around certain instructions which would affect its rung condition-out, see Fig. 

5.4. When hackers or regular developers use such techniques, it would go unnoticed 

which makes it difficult to debug and detect unless there is a clear compiler warning 
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which often are disregarded. In addition, by passing could be done by misplaced 

jumpers (JMP) or jump to subroutines (JSR), see Fig. 5.5. 

 

Fig. 5.4. Bypassing timer done bit. 

 

 
Fig. 5.5. Bypassing all the rungs between JMP and LBL instructions. 

 

• Hard coded values: in certain situations, using hard coded parameters in instructions 

like comparative ones could increase vulnerabilities. Parameters used in the comparison 

instruction can be manipulated by users, hackers, or malicious code without being 

noticed or constantly overwritten by the proper legitimate value, see Fig. 5.6. One of 

the solutions is to protect critical parameters by constantly moving a real-time value 

into it, using MOV instruction [76], see Fig. 5.7. 
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Fig. 5.6. Vulnerable “PRESET” value. 

 

 

 

 

 

 
Fig. 5.7. Using “MOV” instruction to define a “PRESET” value. 

 

 

 

• Racing: misplaced branches, calls, or instructions can lead to inconsistent results. The 

logic is going to behave in an undesired way based on the unpredicted result of the race. 

In Fig. 5.8, “tmr1.DN”, which is a status of the timer “tmr1”, is placed just before the 

parallel branches creating a racing scenario between the timer or energizing “Valve01”. 

To avoid that, the instructions or the branches should be properly placed. “tmr1.DN”, 

see Fig. 5.9, shows the proper location of the instruction to prevent any racing [76]. 
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Fig. 5.8. Racing condition. 

 

 
Fig. 5.9. Racing condition solved. 

 

• Compiler warnings: Some compilers of logic design software might not be strict 

enough in compilingPLC code to give more flexibility to developers. PLC 

programmers should pay great attention to the compiler errors as well as warnings. 

Compiler warnings could have a great value that could shed the light on improper 

codes or instructions that could be exploited by malicious attacks. 

• Infinite loops: using FOR instructions, JSR instructions, JMP instructions, nested 

timers, etc. 

• Fatal Faults: trigger certain faults that could cause PLC program to crash.  
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5.2.2 PLC Vulnerabilities. 

Since PLCs run commercial operating systems, they are vulnerable like any other known OS; 

Linux or Windows. PLCs are not designed to be cyber-resilient since they have limited 

resources and are insecure by design. They were never designed for resilience against threats 

and attacks. The following are some examples of PLCs’ vulnerabilities: 

• Obsolete PLC Firmware: PLC Firmware, i.e., OS, must always be up to date. A 

PLC OS such as VxWorks or OS-9, runs with the highest privileges and there is 

little memory protection between OS’s tasks [132]. If the OS level vulnerabilities 

are exploited by an attacker, the system could be completely taken over allowing 

installation of malicious programs [133]. In general, PLCs’ OS are fragile when it 

comes to security: not frequent update or patches and not built anti-malware 

application. They are not frequently patched or updated because their networks are 

isolated or limited and un-upgradable firmware. More reports are issued regarding 

PLC OS vulnerabilities [134] [135] [136]. Another issue is that some threats are not 

properly addressed or reported. That poor addressing is due to isolated PLC 

systems, undocumented problems, or untraceable threats. It is hard, for instance, to 

update a firmware vulnerability or report it to vendors if PLCs are not directly 

connected to the vendors’ network or to the internet. Without good logging and 

traceability, vendors could not get enough details to report the problem and offer 

proper countermeasure solutions. That makes patching and even revalidating 

feedback difficult. 

• Unrestricted uploads: having an access point to a PLC allows user to upload any 

malicious code to the PLC, manipulate the current running one, or even upload new 

firmware. PLCs typically do not check whether the uploaded code is from a verified 

trusted source or not. Also, PLCs have no capabilities to know whether the uploaded 

code is a malicious one or not. What matters is whether the code is compiled with 

no syntax or program errors. Any PLC compiled code can be uploaded to the PLC 

and overwrites or modifies the current running one. 

• Unlocked Mode: PLCs are, most of the time, unlocked and not protected by any 

password.  That would allow exploiters and hackers to access the running logic 

code, monitor tags, manipulate the code, or even download a totally wrong logic 

code. Some vendors offer physical security keys to lock PLCs, like turning the key 

to “Run”. A locked PLC prevents any code modification, update, or download. 
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• Non-Isolated Networks: with more interconnect systems and the integration of 

IoT, PLCs or any associated device could be exploited by hackers to launch attacks 

against other PLCs or devices that are on the same network.  

5.2.3 HMIs and DTUs Vulnerabilities. 

HMIs, DTUs, and HTUs are becoming more remotely accessible and interconnected with other 

networks and devices. As such, they are becoming more vulnerable and are attracting more 

hackers and threats.  Like any other computers, they are vulnerable to any threats within the 

network and inherit all the vulnerabilities of the OS that are built on. For instance, HMIs have 

become generic or off-shelf software products that are built on or share a common architecture 

computers’ technology, languages, OS, and communication used in Information Technology 

(IT) systems like Windows OS, ActiveX, Java, etc. However, being generic software based, 

HMIs are becoming more susceptible and vulnerable.  Attackers consider them regular PCs or 

vulnerable devices on an accessible network. 

Attacking any HMI, including its related database, could lead to severe consequences on 

software (deleting or manipulating codes, alarms, or database records) as well as on hardware. 

Since HMIs are used by operators to control manual activities and to monitor real-time status 

and alarms, their roles are critical and extremely sensitive. Attacks on HMIs can either slow 

them down manipulate manual activities, fake status of alarms or data, or steal confidential 

logged information. An exploited HMI application that monitors and manually controls field 

devices, might consequently affect the functionality of related PLC-BS devices - encoders, 

VFDs, motors, etc. Software attacks are summarized as follows: 

• External malware: that can be deployed either via internet, company’s network, or 

locally by users – e.g., inserting an infected USB into a HMI, Server, or PC that is 

on the PLC-BS network. Malwares can spy and damage industrial systems, delay 

or block networks, or even include PLC rootkits [137] [111].  

• Deception attacks: that includes a wrong unauthorized identity of a command 

sending device that can enable remote access and cause fatal damage to the software 

and hardware [115]. 

• SQL Injection: affects Web based HMIs and servers with database applications 

(some HMIs or servers). It is a way to take control of a system or to insert 

unexpected SQL statements into a query in order to manipulate a database [115]. 
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5.2.4 Field Devices Vulnerabilities. 

 One of the main vulnerabilities that can be exploited to manipulate and risk PLC-BS 

integrity and reliability is faking hardware status. As real-time processors, PLCs monitor and 

control real-time status (inputs) or command (outputs). When any data sent to a PLC is not 

accurate or delayed, the PLC would execute wrong or improper commands. For example, when 

the status of a physical instrument or device is manipulated to send fake values, a PLC would 

act accordingly without detecting any abnormalities. Tampering with any value of an input or 

an output would deceive the PLC and lead to undesired ladder logic program results; 

endangering equipment, productivity, environment, and human life. That is accomplished by 

compromising the associated network which goes unnoticeably and without modifying any 

PLC logic code or firmware.  In addition to faking their inputs/outputs, hardware devices can 

be vulnerable if the related PLC-BS programs are compromised; whether its HMI related or 

PLC ones – e.g. ladder logic code or database. The following is a summary of hardware 

vulnerabilities:  

• Fake inputs: status, parameters, or values of the compromised sensors or input 

devices (e.g., proximity switches, safety emergency stops, safety switches, 

encoders, VFDs, etc.). Also, such vulnerabilities can lead to fake inputs carried out 

from the HMI to the PLC, e.g., operator’s manual selection, operator’s entered data, 

etc. [137].  

• Fake outputs: status, parameters, or values of the compromised actuators or field 

devices (e.g., valves, VFDs, encoders, stepper motors, etc.) PLCs’ or HMIs’ outputs 

can also be faked; affecting other related devices [108], [137]. 

• Manipulated inputs and outputs values by tampering data integrity of the PLC, 

HMI, or other devices such as manipulating their database or tags to create severe 

hardware damages or threats to PLC-BS [138]. 

• Manipulated PLC ladder logic codes or HMI programs that damages hardware 

devices; Stuxnet exploited Siemens software to manipulate parameters of devices 

resulted in damaging critical hardware devices [108]. 

• Manipulated HMI functionality or PLC ladder logic codes by slowing them down 

to severely affect production or make them inaccessible. 

• Deactivated alarms and critical messages or warnings; could delay response time 

and make it slower to detect the problem.  
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5.2.5 Network Vulnerabilities 

Nowadays, most PLC-BS networks architecture distributes their functionalities across common 

or open standards protocols such as WAN and LAN; Ethernet/IP, DeviceNet, ControlNet, 

Profibus, PROFINET, and Modbus. However, the advancement in related technology have 

increased vulnerability and threats; they lack security-integrated mechanisms and they become 

less obscure to hackers [111]. Not providing security mechanisms to protocols makes the 

network vulnerable to: 

• Packet manipulation (latency, spoofing, eavesdropping, deletion, etc.) [30]. 

• Attacks on the communication stack: network layer, transport layer, application 

layer and the implementation of protocols (TCP/IP, OPC, ICCP, etc.) [115]. 

• Remote or local field devices attacks; Intelligent Electronic Devices (IEDs). 

• ARP Spoofing, password attack, and DoS [117] [118]. 

• Backdoors and Holes in Network Perimeters [11]. 

• Database attacks. 

• Communications jamming, blocking, or hijacking; MITM attacks [126]. 

5.2.6 Network Segmentation Vulnerabilities 

Many companies still assume that they are safe and secure if their industrial networks are off 

the internet or isolated [139]. There are still some who believe that segmenting a network as in 

Fig. 5.1 keeps PLCs networks secure and safe. They assume that air gapped industrial network, 

which is a way of network segmentation, secures all PLCs and associated field devices 

including HMIs. But segmenting the ICS network this way is not secure enough for the 

following reasons: 

• USB threat: the malicious attack could be deployed by infected USB. 

• Inherited: a malicious attack can be carried on by another infected computer or 

HMI that it is plugged to the same PLC-BS network. Also, some worms can go 

from one PLC to another PLC if they are on the same networks. 

• Disgruntled employees: an upset employee can create major damage and harms. 

He or she can sabotage the code, infect HMIs or PCs, write dormant malicious code 

within the ladder logic, or even open certain ports to hackers. 

• Bad code practice: a programmer might inadvertently write pieces of code that 

might damage certain machine or create DoS; e.g. infinite loops.  
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• Dormant access: some vulnerabilities might take years before noticing them. Their 

job is not to create direct damage. They are there just to eavesdrop, collect, and steal 

sensitive information and data. 

5.3 Lack of Data Forensics 

Whenever an attack occurs, a forensic investigation must take place in order to figure out the 

causes and responsibilities. It is typical to collect related data. By analyzing and reverse 

engineering all needed collected data, we can get better understanding of the attack’s behavior, 

elements, techniques, etc. Also, further similar malicious attacks can be prevented and stopped. 

Since PLC-BS are critical and widely used in automated industries and critical infrastructure 

facilities, a thorough forensic investigation would have been a great help because of the 

following: 

• To identify the root cause of the attack. 

• To identify the potential elements and devices involved or exploited. 

• To identify possible risks and weaknesses. 

• To identify devices status and configuration just before the attack. 

• To find the proper remedy of the attack and prevent future similar reoccurring ones. 

Unfortunately, forensic methods or tools are difficult to apply or use in PLC-BS. Unlike 

traditional IT systems and related devices, PLC-BS are more complex and custom-made. The 

difficulties or impediments that make applying digital forensic very challenging - if not 

impossible most of the time - are as follows: 

• Continuity: PLC-BS are continuously fed by field devices and I/O’s.  Mainly they 

are real-time devices that are continuously being updated with newer information; 

tracing previous ones would be hard if there are no continuous incremental backups. 

• Volatility: critical information of running programs and hardware that can be used 

as evidence is located within volatile memory. PLCs, for instance, do not have 

proper hardware and software that log thorough code or firmware modifications or 

updates.  

• Fast Response: since PLC-BS are real-time devices that are continuously fed by 

updated newer information, delaying forensic response would make it more 

difficult to analyze and trace the problem. The slower the response is, the less 

related data will be resided within the volatile memory; overwritten by newer ones. 
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• Validity and availability: Being real-time systems, PLC-BS care much about the 

validity, integrity, and availability of data more than security, encryptions, or 

backups. Slowing the scanning time of any running systems would create 

unfavorable problems. Therefore, using any tools or methods that could slow down 

PLC-BS would not be tolerated. That makes it difficult to embed any typical 

forensic tool. 

 

5.4 PLC-BS Security Recommendations 

Based on extensive experiments and studies that we conducted and PLC-BS audits, the 

following are some recommendations to keep PLC-BS protected against threats or at least 

mitigate the risks: 

• Security First: as industries consider safety as a main factor while designing, 

updating, or functioning any PLC-BS, security should be paramount. That must 

consider the hardware, software, and networks. Companies have to come up with 

more detailed risk assessment, responses, and standardizations before implementing 

any PLC-BS projects. 

• Cybersecurity is everyone’s responsibility. All employees should be always aware 

and concerned about security. Employees should immediately report any insecure 

practice, insecure device, or skeptical behave. 

• Cybersecurity must be an organization culture. For instance, an organization should 

offer periodic security training to its employees. Employees should be aware of the 

security threats and wrong practices that might affect their work areas and systems.  

• Roles and Authentication: privileges to access information and devices should be 

properly restricted and well considered before assigning them to the employees. 

Privileges should be well validated, controlled, logged, and monitored (use unique 

IDs or access credentials). Unauthorized or non-monitored activity should be 

prevented or at least reduced to the minimum. Users should only have access to 

their daily related work and tasks. Automatic logging review and monitoring of 

users might also help. 

• Air-gapped network: PLC-BS systems should have their own isolated private 

networks, as much as possible, or at least clearly distinguished from other networks. 
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• Redundant files backup and recovery tools: use several ways and tools including 

scripts to backup critical files and make it handy to recovery it or use it when 

needed. 

• Daily checkup and comparison: as companies are so concerned about safety before 

and during running production lines, they should worry more about the integrity of 

the files they are running on the PLCs or the HMIs. That should be done by having 

a software tool that compares the ladder logic against the original trusted master file 

before starting the new production lines. There is always a chance that someone 

might sabotage the logic or create a dormant malware within the ladder logic code 

the goes unnoticed. 

• Remote access and IoT: must be restricted either to certain device, areas, or 

sometimes disabled.  If needed, it must only be enabled for limited duration and 

used by internal trained personnel from an approved monitored and controlled 

device; all communications should be filtered and checked. Systems or devices that 

do not need to be connected to other networks, including internet, must be properly 

segregated and isolated to avoid any threat [140].  

• USB ports should be physically disabled on HMIs and on any other associated PCs. 

Only authenticated and approved USBs are to be allowed and must be used by 

administrators. Malware, like Stuxnet – spread via SCADA network through an 

infected USB storage device. 

• Spare port of any device should be disabled. 

• System logging: must be generated and kept for a reasonable amount of time in case 

are needed if any thing goes wrong.  

• Periodic system auditing and periodic penetration testing. 

• Continuous vulnerability and threats assessment and pre-emptive solutions.  

• Periodic risk assessment and analysis. Risk assessment answers questions like: 

What can go wrong? What is the probability that it would go wrong? What is the 

impact or what are the consequences [141] [139]. 

• A cost–benefit analysis (CBA) is important, but without compromising security, 

safety, and data real-time validity, integrity, and availability. 

• Dedicated and protected devices: limit connection to PLC-BS to certain dedicated 

devices. Make sure any end-user device or PC is safe and protected (e.g., antivirus 

and other security apps). 
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• Periodic updates: keep software including firmware up to date to reduce 

vulnerability and threats by deploying approved patches or updates from dedicated 

approved and safe PCs. 

• Intrusion system detection: that should also include ‘traditional’ perimeter 

protection (e.g., antivirus, firewalls, etc.). They should always be kept up-to-date 

and ON. 

• PLC-BS should be resilient and secure. Do not just focus on securing certain 

insecure field devices. Securing the whole systems is critical and a must.  

• It is impossible to have 100% risk free system. But we should make it harder on any 

attacker to initialize any major or massive attack.  If stopping a malicious attack is 

difficult, at least slow it down. Stopping or slowing down any attack can be done 

through fast detection, network segmentation, and recovery steps. 

5.5 Next Generation: Secure by design 

Currently, several research papers have explored how to enhance security or add some security 

features to PLC and PLC based devices. [142] is one of those research papers that can be 

summarized as follows:  

• PLC signed firmware and secure boot. 

• High percentage of ICS protocols will be able to integrate authentication into certain 

protocols. ICS Protocols authentication will prevent attackers from spoofing or sending 

illegitimate commands. 

• IPsec communications protocol between Windows based computers and a few PLCs - 

Modicon M580. IPsec is implemented only among certain modules for authentication 

header protocol and uses pre-shared keys rather than certificates. 

• Security Logging: get ICS security logs into a SIEM; partially implemented in Modicon 

M580 [142]. 

• Disabling unused Ethernet ports. 

• Access Control List (ACL): restricts access by IP address based on the administrator 

criteria, used by Modicon M580 safety PLC [142]. 

• Syslog: a few PLCs, Modicon M580 safety PLC, have started supporting syslog. 

Security events or some PLC logs can be exported and managed [142]. 

• For old PLC-BS, add certain modules in front of the existing controllers to add or 

enhance security functions. 
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Those critical improvements are yet not widely adaptable or applicable. Mainly, most of PLC-

BS can’t adapt or integrate those features due to limited features and resources, backward 

compatibility problems, limited compatible modules, PLCs’ scan time delay, and high costs 

which might require a major rip and replace. Some of the drawbacks of using IPsec: 

• Adding IPSec to M580 PLC consumes extra 10ms for reading 10,000 variables [142]. 

• IPsec is exclusively used between M580 PLCs and Windows computers. It is not built 

to support communications among M580 PLCs [142] 

• Generic or typical filed devices, like sensors or Armorblocks, may not work with 

encryptions and enhanced security due limited resources and the priority of real-time 

transmission. Even it was to be feasible to encrypt some devices, updating the algorithm 

of those field devices would be a difficult task.  

Nevertheless, PLCs are still far from being capable to detect internal threats within their 

running code due to limited resources. While regular OS systems, such as Windows, have 

antivirus application and malicious detection tools, PLCs do not. Any code that is compiled 

without any error could be downloaded to a PLC and get executed whether its malicious code 

or not. A PLC can’t detect and warn operators of any suspicious behavior nor it could 

intelligently eliminate any eminent or suspicious threat. 

 

5.6 Conclusion 

This chapter has provided an overview of the architectural components of PLCs - languages 

and hardware - in addition to an overview of associated industrial networks, field devices, 

HMIs, and DTUs. The chapter summarized the major vulnerabilities of PLC based devices and 

listed each group under its proper categorization. The vulnerabilities and threats against 

PLC_BS are categorized as: PLCs code vulnerabilities, PLCs vulnerabilities, HMIs and DTUs 

vulnerabilities, field devices vulnerabilities, network vulnerabilities, and network segmentation 

vulnerabilities. Every category shows its associated vulnerabilities and threats that could be 

exploited by attackers or malwares.  A special attention has been given to illustrate, analyse, 

and evaluate certain ladder logic codes and bad programing practices. Not writing PLC 

programs professionally and up to recommendations provided would increase unnoticed 

vulnerabilities and threats. The absence of forensic data is yet another challenging weakness 

that we have discussed. Not having adequate and detailed forensics would encourage hackers 

to exploit such missing feature to cover their traces and further similar risks or attacks. It would 
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be hard if not impossible to reverse engineering any attack and collect enough evidence among 

PLCs. In addition, recommendations have been provided and suggestions to avoid future 

vulnerabilities and threats. Following those recommendations, would highly mitigate, reduce, 

or eliminate malicious attacks or threats. Finally, we have provided PLCs are not “secure by 

design”, they have their vulnerabilities like any other OS. Upcoming next generation PLCs and 

related security solutions have been presented; showing some features and challenges. We have 

explained the advantages of next gen PLCs – like Modicon M580 safety PLC – and their 

limitations; especially when it comes to resources, costs, and backward compatibility.  
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Chapter 6  Applied Methods to Detect and Prevent 

Vulnerabilities within PLC Alarms Code 

6.1 Introduction  

The demand for reliable, valid, and secure PLC alarms has been a great concern since the 2000 

Maroochy Shire cyber event, Australia [28] [8] [143]. In the Maroochy malicious attack, an 

insider was able to suppress the PLC alarms to prevent them from notifying operators and 

central servers of any threats or abnormalities. Undetected suppressed or inactive alarms 

prevent real-time notification messages which in turn could mislead operators, delay 

maintenance, increase financial loss, risk the safety of ICS systems, or even jeopardize human 

life by preventing outgoing alarms from being raised and reported, operators were fooled into 

believing that the system was running normally. Though preventing alarms from being raised 

or being acted upon might not be considered as critical as other threats, it could risk critical 

devices or endanger human life [144].   Every PLC has a dedicated alarms code that is 

responsible for monitoring the status of the controlled devices and raising alarms to alert staff 

in case of any abnormalities or faults. 

This chapter focuses on identifying and detecting vulnerabilities within the PLC alarms code 

and introduces countermeasure techniques to enhance the validity and the reliability of the 

code. A real-time test bed was implemented in ladder logic that was able to detect code 

abnormalities and prevent possible exploitations. 

6.2 Related work 

Very little work has been done on vulnerabilities of PLC alarms code. The concerns of 

researchers have been mostly focused on other kinds of vulnerabilities that are associated with 

general PLC codes [78] [79] [82] [81] [80] [137] [145], non-code related or general alarms 

analysis and management [144], [146] [147] [148] [149] [150] [151] [152] [153] [154], ICS 

networks related [155] [119] [156] [133] [157] [158], code intrusion and injection [137] [90] 

[159] [160] [121] [161], security credentials and accessibilities [83] [87] [89] [162], general 

recommendations and surveys [163] [164] , statistics [165] [166] [167], and assessment [168]. 

6.3 Roles of PLCs and their Dependencies in Alarms  

ICS, typically, consist of PLCs, HMI devices, industrial networks, and field devices. Because 

of their important roles in monitoring alarms, the following is a brief explanation of each:  
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6.3.1 PLCs’ Alarm Code 

PLCs are the main controllers of ICS. PLCs handle several programs that control and monitor 

other dependencies, activities, and processes in a real-time manner. Among those programs, 

there are associated or dedicated codes to handle alarming messages. A PLC alarms code can 

be written in ladder logic, function block diagram (FBD), sequential function chart (SFC), or 

structured text (ST).  

The role of a PLC alarms code is to raise alarms whenever faults or abnormalities are detected 

while monitoring field devices and operations. Once detected, the PLC alarms code sent raises 

alarms to HMIs to alert operators, see Fig. 6.1.  

 

 

Fig. 6.1. PLC flow in capturing and triggering alarms. 

 

6.3.2 HMIs’ Role  

HMIs act like visual aids to operators where any alarming messages raised by a PLC alarms 

code would be displayed and acknowledged by the operators. HMIs could be considered like a 

GUI interface of a PLC to operators to check messages and perform manual activities. HMIs 

could be as simple as touchscreen panels or could be more complex such as server-based ones 

where they can handle statistical tools, logging capabilities, ladder logic code monitoring in 

addition to alarming messages and manual activities.  

When it comes to monitoring messages, HMIs are slaves to PLCs since alarming messages are 

controlled by PLC alarms code. If alarms within a PLC alarms code are suppressed, no 

messages would be displayed on HMIs.  
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6.3.3 Industrial Networks’ Role  

Industrial networks (such as EtherNet/IP) enable real-time communication among I/O 

modules, HMIs, PLCs, and associated field devices. If the network is down or slow, that would 

affect displaying proper alarming messages handled by PLCs.  

 

6.3.4 Field Devices’ Role 

Field devices (such as limit switches, actuators, drives, etc.) are controlled and monitored by 

PLCs via industrial networks [6]. If any field devices or their associated are faulty, the 

designated PLC would detect that, and related alarms would be raised by the PLC alarms 

program. However, no alarms would be raised or triggered, if the PLC alarms program gets 

compromised, which could lead to critical consequences.  

The following are examples of some field devices with a brief description of each of them: 

 

• Sensors’ Role: Sensors send the status of devices and instrumentations to PLCs. Even 

with highly reliable, thorough, and accurate sensors, any designated PLC alarms 

program would be not valid and reliable if its code gets compromised; where alarms 

could be suppressed, tampered with, or deleted.  

 

• Actuators and other Devices’ Role These are devices that translate received output 

signals from PLCs into practical operations. Good examples of such devices are 

actuators, inverters, and servo motors. Most of the time, output commands from PLCs 

to such devices must also be monitored, so PLCs could verify, stop, or adjust any of 

their behaviors accordingly. In case of any errors or issues, the PLC through its alarms 

program would raise alarming messages to alert operators. 

 

• I/O Modules’ Role: I/O modules, such as ArmorBlocks and I/O scanners [19], 

facilitate communications between PLCs and all other devices. They reduce labor costs, 

wiring, and maintenance costs. PLCs monitor and control all inputs and outputs PLCs 

through I/O modules; including feedback and status bits that are critical in any PLC 

alarms program. 
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6.4 PLC Alarms Overview 

Alarms including faults, system errors, and warnings are essential indicators in protecting, 

maintaining, and enhancing automated systems. The alarms are simple to configure and 

develop in a PLC alarms code and HMIs. Despite their simplicity, they are critical, vital, and 

helpful in recovering from downtime or preventing damages [144]. Whenever there are any 

faults or abnormalities, alarms are raised or activated to protect devices and sent to HMIs to 

alert operators.  To be useful and helpful, alarms should cover and monitor the status of all 

sensors, devices, I/O modules, and other dependencies that a PLC controls. Therefore, a PLC 

alarms code that handles alarms must be reliable, valid, and thorough. Thorough and reliable 

alarms would reduce maintenance costs, decrease troubleshooting time, and increase 

efficiency, and help in statics tools if logged [148].   

The following are some useful information regarding the alarms raised by PLC alarms code: 

 

6.4.1 Alarms Levels 

PLC alarms can be broken into several levels or groups: 

• System-stop alarms: these are raised whenever there are global, unsafe violations where 

more than one station is involved. For example: safety gates and perimeter E-Stops. 

• Station-stop alarms: these only stop specific and certain devices or stations within a cell 

or a predefined zone. 

• Cycle-stop alarms: they are non-immediate stops that take effect once a cycle is done.  

• Warnings alarms: these are not designed to stop any system or devices but are used to 

initialize warnings in case of undesired conditions. Though these are not considered 

critical, they are helpful in predictive maintenance. 

6.4.2 Alarms Prioritization 

Prioritizing alarms helps in preventing flooding the system with messages and reduce 

operators’ distractions. When an alarm is raised it indicates an abnormal state was detected by 

the PLC alarms code in a process, an operation, or a device. Since not all alarms carry the same 

weight, alarms prioritization must be taken into considerations to reduce distraction and 

accelerate maintenance response time, see Fig. 6.2. 

The prioritization of alarms is categorized as follows: 
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• High Priority alarms: cause critical harm to humans and other living beings, 

environment, equipment, and huge economic losses. Such alarms must be given the 

highest attention and fastest response time by operators. 

• Medium Priority alarms: Are not as serious and critical as the previous ones. They 

might cause serious financial loss or deteriorate the life service of devices or equipment 

in the long or short run. 

• Low Priority alarms: minor financial impact, and less financial loss. 

 
Fig. 6.2. Alarms priority based on criticality and time responses. 

 

6.4.3 Supressed or Tampered Alarms Consequences: 

If alarms within the PLC alarms code were to be suppressed or tampered with, they could cause 

the following: 

• Risk the safety of workers or even other living beings. 

• Impact the functionality and safety of devices. 

• Impact public and private facilities and infrastructure. 

• Impact on the environment. 

• Increase maintenance costs and troubleshooting time. 

• Prevent addressing critical alarming messages. 

6.5 A Real-Time Testbed for PLC Alarms Code 

In our testbed prototype, a ladder logic program was developed as a real-time PLC alarms code 

to perform several experiments.  
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6.5.1 Devices and Software Used 

The experiments were conducted by using current and well-known industrial PLC-BS 

components in industrial systems. The following are the main devices and software used in 

implementing the testbed: 

• PLC: Allen-Bradly/Rockwell GuardLogix5570 Safety Controller. 

• Software: Rockwell Logix Designer version 33 to develop, monitor, and edit the ladder 

logic code. 

• Allen-Bradley EtherNet/IP Network modules. 

• Allen-Bradley ArmorStratix module. 

6.5.2 Developing Alarms Ladder Logic Code 

A typical ladder logic code was designed to monitor faulty devices and operations, as shown 

in Fig. 6.3, Fig. 6.4, and Fig. 6.5 . In the beginning a “Reset” setup code was implemented to 

clear non-retentive faults whenever it is needed, as shown in Fig. 6.3. For instance, by pressing 

the associated HMI push button (HMI_PB_Reset) of PV01 group, all faults related to that 

group would be cleared and acknowledged.  

 

Fig. 6.3. Faults reset setup to clear non-retentive alarms. 

 

If faults were to be acknowledged but not cleared, then that would be a sign of a real-time 

faulty device that must be resolved. Typically, whenever a field device is faulted, it would be 

reported to the respective PLC alarms code where a designated alarm message or tag, such as 

“_PV01_Arrays_Faulted[0].0”, would be enabled,  as shown in Fig. 6.4. Overall, every 

detected fault would raise an alarm bit, i.e., triggering an HMI message to be displayed, as 

shown in Fig. 6.5.  
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Fig. 6.4. Alarms setup for every fault related to PV01 group.  

 

 

 

Fig. 6.5. Example of faults sent to HMI. 

 

 

Another optional method that relies on File Bit Comparison instruction (FBC) was introduced, 

as shown in Fig. 6.6, based on the previous Alarms Ladder Logic Code. The implementation 

was done by using FBC instruction which makes detecting the occurrence of faults much easier.  
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Fig. 6.6. Monitoring all PV01 related faults. 

 

6.6 Case Study: Introducing  Real-Time Attack  Techniques to Exploit 

Vulnerabilities  

A case study based on the previously described test bed was conducted to expose vulnerabilities 

within the PLC alarms code using a variety of exploits.  The main target was to detect any or 

all suppressed or modified alarms within the PLC alarms code. 

Adversaries might suppress, delay, or delete alarms raised by PLC code to evade detection to 

cause damage and disruption. Suppressed or inactive alarms prevent real-time notification 

messages which in turn could lead to undesired consequences.  Bad code practices can also 

result in disruption to processes and cause damage. 
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The following is summary of the main vulnerabilities scenarios that might be exploited:  

• All devices are functioning properly and reporting all abnormalities to the designated 

PLC but their alarms within the PLC code are deactivated, deleted, or tampered with. 

So, the PLC would obtain all status of devices and operations, but alarms would not be 

raised. That would be a sign of suppressed alarms within the PLC code. 

• Alarms are delayed or skipped due to code modifications. That could reduce 

productivity, increase maintenance costs, or even risk the system. 

• Alarms are faked to deceive operators, risking the safety of the devices.  

• PLC alarms code is valid and legitimate, but the designated PLC is not receiving any 

faults from faulty devices. This could be due to physical problems, networks issues, or 

wrong configurations. 

To mimic a malicious code attack where hackers would exploit vulnerabilities of a running 

PLC alarms code, real-time exploitation techniques were introduced into the test bed and 

applied without stopping any process or recompiling any routine. The attack models were 

stealthy and ran without being detected or noticed.  

The following are four real-time attack models used to exploit PLC alarms code: 

 

6.6.1 Skipping or Deleting Alarms Code 

One of the techniques used in skipping some alarms or all alarms, was by embedding a “JMP” 

Jump instruction, named “LBL01” and “LBL” instructions, named “LBL01”. The CPU 

skipped scanning all alarms rungs (code lines) that are between “JMP” and “LBL” without 

energizing or raising any alarms bits within that range, see Fig. 6.7. 

The logic would not distinguish whether skipping a code using “JMP” was legal or not. 

Therefore, operators would not be notified, and skipping the code would not be detected. 
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Fig. 6.7. The logic code between “JMP” and “LBL” is skipped. 

 

6.6.2 Slowing Down the Scan Cycle of the PLC Alarms Code 

Slowing down the scan time of the PLC alarms code means that the code was modified either 

by adding more code elements or suspicious loops. Some embedded finite loops would 

significantly slow down logic response for highly critical situations, or they might lead to a 

faulty PLC scenario. To slow down a scan time, a single “FOR” instruction was embedded to 

call another routine several times, looping for 500 times, see Fig. 6.8. Once the looping started, 

the scanning of the logic code was slowed down and then the PLC was faulted. When the 

number of loops was reduced to 300, the scanning of the logic was slower than normal but 

without faulting the PLC.  The PLC was not able to detect or report to the operator any slower 

scanning of the PLC alarms code. 

 

 

Fig. 6.8. Embedding a “FOR” to slow the scanning time of the code. 

 

 

6.6.3 Deactivating or Suppressing Alarms  

In this test, the alarms were suppressed when a single Boolean instruction, “Always_OFF”, 

that is false (zero) was embedded before the energizing the alarms, as shown in Fig. 6.9.When 
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the “Always_OFF” bit was ANDed with any precondition instructions, like “SysReady”, the 

rung condition-out result was false i.e., all its output coils de-energized.  

In other words, whenever the result of the rung-condition-in was false, the result of the rung-

condition-out was false as well, i.e., suppressing all associated alarms, as shown in Fig. 6.10. 

The PLC in this scenario would not detect any abnormal code behavior because all syntaxes 

and code elements are legal. 

 

 

Fig. 6.9. Faults were deactivated when ANDed with a false bit. 

 

 

Fig. 6.10. Suppressed or deactivated faults means values are set to zero. 
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6.6.4 Faking Alarms  

The alarms in this scenario were faked rather than being skipped or deleted. Faking alarms 

would be difficult to detect since they would deceive the operators by showing faked updated 

alarms to hide long time suppressed critical messages. A running system without any faults for 

a long period of time would be unusual in ICS.  

To counter such scenario, a flash bit called “Flash” was created based on code of two timers, 

as shown in Fig. 6.11. The “Flash” bit acted like a fluctuating false that occurred every 

predefined duration (toggled ON/OFF every few seconds). The “Flash” bit was placed before 

energizing alarms to fool the operators that alarms were active and occurring occasionally in a 

normal way, see Fig. 6.12. 

 

Fig. 6.11. Create a flashing bit using timer on delay instructions. 

 

 

 

Fig. 6.12. Misleading diagnostics by adding a flashing bit. 
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6.7 Countermeasures  

For the attacks deployed and implemented in the previous case study, countermeasure solutions 

were introduced and tested to prevent and detect each attack using real-time ladder logic code. 

The countermeasure solutions are listed as the following: 

- A Scan Time Countermeasure Against Skipped or Deleted Code Attack. 

- A Scan Time Countermeasure Against Slower Code Scan Cycle Attack. 

- A Heartbeat Bit Countermeasure Against Inactive or Suppressed Alarms Attack. 

- A Physical Plausibility Check to Detect Faked Alarms Attack. 

The details of each counter-attack model are explained hereafter. 

6.7.1 Method 1: A Scan Time Countermeasure Against Skipped or Deleted Code 

Attack 

6.7.1.1 Scan Time Overview 

The scan time of a code is the amount of time the CPU would take to scan the code within a 

scan cycle. Since the scan time value would be affected by any code modifications, storing a 

scan time value (or average of several scan time values) and using it as a reference point would 

be a reliable and effective approach. To do that a ladder logic code was developed and 

embedded within the PLC alarms code to capture the scan time value of the running PLC alarms 

code under normal conditions. 

 The average of several scan time samples was computed and stored as a reference point. It was 

proven that whenever portion of the code was skipped, the scan time was faster than the 

average, and vice versa. By using comparison instructions further ladder logic scanning would 

be stopped and staff would be warned whenever a scan time value is not within the range of 

the average one. 

6.7.1.2 Developing Scan Time Code 

Capturing the scan time of the PLC alarms code or any other specific routine is not a direct 

built-in feature in Rockwell PLCs. Built-in timer instructions were not applicable when 

capturing microseconds intervals. 

 To circumvent that, a “WallClockTime” object of a Get System Value (GSV) instruction was 

used, see Fig. 6.13. 
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Fig. 6.13. Capturing the starting point of a scan time. 

 

 The “WallClockTime” is a continuous PLC built-in global timer that provides timestamps 

scheduled by the controller.  A “WallClockTime” object was added to the beginning of PLC 

alarms code to timestamp the starting point of every initial scanning of the code. Then the 

captured timestamp value was stored into “_PLC_Time[0]” array, as shown in Fig. 6.13.  

Another “WallClockTime” object was added at the end of the code to capture its timestamp. 

The captured time value was stored into “_PLC_TimeNext[0]”. By subtracting the values of 

the two arrays, “_PLC_Time[0]” and “_PLC_TimeNext[0]”, we were able to get the time that 

the CPU took to scan the PLC alarms code within one cycle. The scan time captured was stored 

into “PLC_TimeResult[0]”, as shown in Fig. 6.14. As the CPU keeps scanning the code, a new 

scan time value was captured with some marginal variance.  

 

 

Fig. 6.14. Capturing the scan time by the end of the routine. 
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To get more accurate result with less discrepancies (due to  clock latency), 10 scan time samples 

were captured and stored within FIFO arrays, from 0 to 9, as shown in Fig. 6.15 and Fig. 6.16. 

The average of those stored values of each scan time was calculated using “CPT” (Compute) 

instruction, and the result was stored in “ScanAverage” array, as shown in Fig. 6.17. The code 

is scalable and could get more enhanced if more reliable and accurate value of the scan time. 

For instance, If the code is set to capture more than 10 scan time, the average would be more 

accurate. 

 

 

Fig. 6.15. Capturing several values of the scan time. 

 

 

Fig. 6.16. Using a “FIFO" to capture several values of the scan time. 
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Fig. 6.17. Calculating the average time of ten scan time values. 

 

6.7.1.3 Using Scan Time to Detect Skipped or Deleted Alarms Code 

This method was introduced and tested to detect skipped or deleted alarms by checking and 

validating every scan time per PLC cycle. When a newly captured scan time was less than that 

of the reference scan average value, then the PLC stopped further code scanning (stop further 

code execution) and warned operators.  After skipping all rungs related to alarms, a new scan 

time value was captured, “_PLC_TimeResult[0]”.  As expected, the scan time was 

tremendously less than that of the original average value, “ScanAverage[0]” (23 microseconds 

compared to about 592 microseconds).  Several new scan values of the modified code were, as 

shown in Fig. 6.18. Then the average of those values was computed and stored in 

“ScanCurrentAvg[0]” to get a more accurate and stable value, see Fig. 6.19.  By comparing the 

newly calculated average, “ScanCurrentAvg[0]”, to that of the reference a discrepancy was 

detected and a warning message, “Warn_HMI_User” bit, was raised to alert operators, as 

shown in Fig. 6.20.  The result of the comparison was also used as a precondition to stop further 

logic scanning, see Fig. 6.20. 

 
Fig. 6.18. Capturing scan time values after logic was skipped. 
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Fig. 6.19. The new scan time average of the modified code.  

 
 

 
Fig. 6.20. Preventing further logic scanning. 

 

6.7.2 Method 2: A Scan Time Countermeasure Against Slower Code Scan Cycle 

Attack 

Since embedding more code or finite loops was not detected by the PLC, as demonstrated in 

the earlier attack model, a real-time countermeasure technique based on a scan time 

implementation was introduced. The PLC cycle would take more time to finish scanning the 

embedded code, i.e., increasing the scan time duration.  When “For” instruction (with 300 steps) 

was embedded within the PLC alarms code, the scan time trap was able to detect that attack 

based on its scan time duration.  Fig. 6.21 shows that the new scan value was above 230000 

microseconds, significantly greater than that of the normal average value which was around 

592 microseconds.  
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Fig. 6.21 The scan time was significantly increased after inserting “For” loop instruction. 

 

For reliability, several scan time values were captured and stored, as shown in Fig. 6.22. Then 

the average of those was computed and stored in the array named “ScanCurrentAvg[0]”, as 

shown in Fig. 6.23.  

 
 

Fig. 6.22. Several scans time values were captured and stored. 

 
 

 

 

 
Fig. 6.23. The average scan time was computed. 
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Similar to the previous comparison code setup and techniques introduced in Section 6.7.1, once 

an abnormal scan time was detected, further logic scanning would not be allowed, and a 

warning message was sent to operators, as shown in Fig. 6.24 and Fig. 6.25. 

 

 

 

Fig. 6.24. Preventing further logic scanning and alerting staff. 

 

 

 

Fig. 6.25. Another way to prevent further logic scanning by using “JMP” instruction to skip 

certain code. 
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6.7.3 Method 3: A Heartbeat Bit Countermeasure Against Inactive or Suppressed 

Alarms Attack 

A heartbeat code was developed to verify the validity and the real-time status of alarms. The 

alarms would be considered invalid if all faults were idle (all ON or all OFF) within a 

predefined duration of time.  The resultant of the faults of each group was tied to a Boolean 

bit, such as “GroupAlarms05”. 

When “GroupAlarms05” had its status idle for 3600000 milliseconds, the heartbeat bit, 

“Heartbeat_OK”, was disabled, as shown in Fig. 6.26 and Fig. 6.27. A dead or disabled 

heartbeat bit was then used to stop further logic scanning and to warn operators.  

 

 

Fig. 6.26. Heartbeat setup based on alarms within a group. 
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Fig. 6.27. Heartbeat setup based on groups of alarms. 

 
 

6.7.4 Method 4: A Physical Plausibility Check to Detect Faked Alarms Attack 

To detect faked alarms or unnoticed malfunctioning devices, a physical verification of all 

critical devices and instruments involved must be conducted. A physical plausibility check 

should be performed to validate whether the alarms are matching real-time status and behavior 

of field devices. 

The following are some of the techniques that should be followed to properly validate the 

process of verification: 

 

6.7.4.1 Validate a Device Operation Based on a Predefined Duration 

Validation of the operation of devices and instruments must be based on predefined duration. 

The operation time of a device should be compared to a predefined or to a previously computed 

average while physically operating or checking the device. It is not enough to check, for 

instance, that a locking pin is extending without comparing its operation duration to a specific 

predefined time. If the behavior of an instrument or a device is taking more than its predefined 

duration, then the operators should be alerted, and any associated alarms should be raised.  
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6.7.4.2 Validate PLC Outputs  

There should be a handshaking validation between a PLC and the controlled devices (such as 

actuators) through their statuses. A PLC should validate that an output is sent to the proper 

designated device by getting the proper expected feedback before running further code. In the 

absence of a device feedback or proper acknowledgment, associated alarms must be raised. For 

instance, when a PLC sends a program number to a robot, the robot must send back a matching 

program number. If both program numbers are not matching, then the PLC should alert the 

operators and stop executing the rest of related code. 

6.7.4.3 Validate PLC Inputs  

Validate the inputs of sensors and other monitored devices based on their proper physical 

operations. For instance, a clamp should indicate an exclusive status which is either “OPEN” 

or “CLOSED”, neither in between nor none. If the hardware indicates that both are active 

“TRUE” or both are “FALSE”, an alarm should be reported.  

6.7.4.4 Validate Coils or Commands 

Validate there is no conflict among PLC commands (such as energized coils or outputs) that 

work in pairs. A conveyor, for instance, should not get a request to move forward and backward 

at the same time. A pin, for instance, should not be commanded to extend and retract at the 

same time. Such invalid conflict should be monitored, logged, and prevented. 

6.8 Results and Discussion 

The main contribution of this chapter are the solutions that can be applied to mitigate real 

attacks on PLC alarms.  It was shown how the ladder logic code of alarms could be 

compromised even though all other field devices, including HMIs, were properly functioning, 

leading to serious damage. Four attack models within the PLC alarms code were introduced 

and exploited designated PLC alarms code. Each one of the attacks relied on modifying the 

ladder logic of the PLC alarms code by embedding instructions that adversely affected the 

behavior of the alarms. Real-time countermeasures were deployed and successfully detected 

and prevented those introduced attacks.  

To analyze and verify our previously calculated scan time values, real-time trends that captured 

and analyzed real-time scan time values were introduced and demonstrated using an 

experimental test bed.  Each trend captured more than 50 real-time values of the PLC alarms 

code scan time, “_PLC_TimeNext[0]”. The values were captured and analyzed during a 2 
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millisecond interval. Under normal condition, attacks free scenarios, the values of the captured 

scan time in our test bed were between 469 and 606 microseconds, as shown in Fig. 6.28. All 

those captured values were close to the average that was calculated previously, about 592 

microseconds, see Fig. 6.17. 

 

Fig. 6.28. Capturing several scan-time values under normal conditions during 1 second. 

 

Similarly, when the skipping code attack was introduced the scan time value was significantly 

reduced. The trend diagram provided in Fig. 6.29 shows that the real-time values of the scan 

time were within the range of 20 and 23 microseconds. That was close to the average scan 

computed earlier, see Fig. 6.17. 

 

Fig. 6.29. Scan-time values of the compromised skipped code within 2 seconds. 
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Regarding the slow scan time attack, the captured real-time values of the scan time was around 

2300 microseconds, as shown in Fig. 6.30. That was significantly more than the normal average 

scan and close to the abnormal average that was computed earlier, see Fig. 6.23. Similar 

measurements can be extracted from any PLC and analyzed to detect PLC alarms code 

abnormalities. 

 

 

 

 

Fig. 6.30. Capturing several scan-time values when slow code attack was introduced. 
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6.9 General PLC Alarms Code Guidelines 

6.9.1 PLC Alarms Code Best Practices 

For safer systems and better troubleshooting and recovering, it is recommended that PLC 

alarms code follow these code practices: 

• Alarms code must reside in dedicated and separated PLC routines to make it easier to 

authenticate, analyze, and troubleshoot. 

• Raised alarms bits by PLC code must stay set (latched) once they are triggered and only 

cleared (reset) if faults are resolved and acknowledged by operators. 

• Raised alarms must be logged into arrays within PLCs and sent instantly to designated 

HMIs where they would be clearly displayed and logged. 

• Validate alarms raised within PLC alarms code with those displayed on HMIs. In some 

scenarios, a PLC could be triggering the proper messages on its side, but an HMI 

messaged could be misconfigured. 

• Each alarm configured within the PLC alarms code must have a unique ID or identifier, 

so it can be properly initialized, set, and tracked. The identifier is a unique fault code 

that must be considered when implementing the alarms within the PLC code. Each 

alarm must be clearly displayed on any associated HMIs with its ID and proper 

descriptive message. 

• Alarms within PLC alarms code must have standards that define naming conventions, 

tags, and data types. 

• Alarms could be more useful if they are time stamped. That would help in knowing the 

initial root cause of the problem. 

• PLC alarms code should be password protected. 

• A comparison of the PLC alarms code must be performed with a previously validated 

file. The comparison should be performed every time the checksum of the PLC is 

changed. 

• Raising the same alarm (output) in more than one place within the PLC code should be 

avoided, especially those are OTE (Output Energize) based. 

• Empty branches must not be allowed.  

• Forcing tag values should be avoided since forced bits could be hard to track. 

• Avoid any racing scenarios within the PLC alarms code. Racing occurs when two 

routines or set of operands of logic are racing against each other.  
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6.9.2 Other Suggested Techniques 

6.9.2.1 A Mirror PLC for Alarms 

In some critical scenarios, adding a duplicate or a mirror PLC would be an effective use of 

redundancy. The redundant PLC can be used as an external backup for alarms, safety, and other 

critical routines. The access to a mirror PLC should be very limited and restrained. A mirror 

PLC can be used also as a real-time reference in checking if there are any code modifications 

within the primary PLC. If any discrepancies are found, then the operators must be alerted. 

Also, having a backup PLC would make compromising the code harder on hackers. 

6.9.2.2 Effective Usage of HMIs and Logs 

It would be more effective if PLC alarms, abnormal scenarios, scan time values, PLC cycles, 

etc. are sent and displayed on HMIs. Those charts would and logged information would be 

used in trends and statistical charts. 

6.9.2.3 Alarms Test Mode 

Enhance PLC alarms code to handle an automatic Alarms Test Mode (ATM) where operators 

can run it to verify all alarms. When ATM is enabled, the PLC would raise every alarm in a 

sequential manner and display all of them on the designated HMI. If an alarm is not raised on 

the HMI, then operators should be alerted.  
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6.10 Conclusion 

The real-time test bed introduced in this chapter exposed some vulnerabilities of the ladder 

logic code responsible for raising alarm messages, i.e., PLC alarms code.  

Four real-time attack techniques were introduced and applied within the PLC alarms code while 

the PLC was in “RUN” mode. None of the attacks stopped or interrupted the PLC, other ladder 

logic code, or got detected. All the attacks could be used to cause serious damage to a PLC 

based ICS. The attacks were based on different ladder logic scenarios and techniques. 

It was proven that the PLC was defenseless in detecting or preventing any of those embedded 

attacks. Several effective countermeasure solutions against the described attacks were 

introduced: scan time code, heartbeat code, and verification guidelines of alarms and 

designated physical devices. One of the challenges faced in this experiment was in capturing 

the scan time of a fast cycle. The built-in timer instruction provided by Rockwell software were 

not capable of capturing time intervals within microseconds. To bypass that problem a 

“WallClockTime” object was used.  
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Chapter 7  Equipping PLC Code with Self-Detection 

Mechanisms to Detect and Prevent Vulnerabilities and Threats   

 

7.1 Introduction  

As adversaries are finding more ways to compromise the code of PLCs, relying on external 

perimeters and external counterattacks to protect PLCs is not any more sufficient. Equipping 

PLCs with self-defence and self-detection mechanisms is becoming more critical and essential. 

This chapter focuses on enabling PLCs to expose, detect, and prevent vulnerabilities within the 

code they are running. The chapter provides novel counterattack code techniques that enhances 

the security of ladder logic code to make it self-aware of code exploitations and abnormalities 

based on code behaviors.  A real-time ladder logic code test bed that addresses six different 

real-time attack models were implemented and applied to a running PLC program to prove 

their typical defenseless mechanisms. The attacks were stealthy, and they effectively achieved 

their malicious goals in modifying the PLC code without being detected. With the deployment 

of our code countermeasures, the PLC detected and prevented those attack models including 

the detection of code abnormalities, modifications in the overhead time slice, and any 

manipulation or deterioration of certain field devices. The novel countermeasures against the 

introduced attack models were implemented, mainly, based on a novel Scan Time Code (STC) 

setup that monitors the runtime execution of a particular code per scan cycle.  The introduced 

countermeasures can be implemented to any similar PLCs to enhance its defense mechanism 

and protect ICS. 

7.2 Related work 

Very little work, if not none, has been done on vulnerabilities of PLC code and how to protect 

within the PLC scanning time. Researchers are more focused on third party solutions that are 

related to securing networks or association PC based devices and software. 

[78] [79] show that bad code practice and improper or poor ladder logic design would increase 

the risk of vulnerabilities within PLC code. Inexperienced programmers are more concerned 

about the functionality of automated devices than vulnerabilities or poor code practices. 

[79] shows several bad code practices that could be exploited and risk the safety of PLC-BS. 

[81] provided ladder logic bombs (LLBs) where a ladder logic code was injected to execute 

malicious PLC code that manipulated receive status of field devices. The code could also be 
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utilized to initialize DoS attacks. [80] presented a PLC-Blaster worm that targeted Siemens 

PLCs, SIMATIC S7-1200. The worm was hosted on Siemens PLCs, modified PLC code, 

manipulated outputs, and scanned associated networks to target other PLCs. [81] presented 

attack model that was able to access a Siemens PLC by using a SNMP Scanner and a SOCKS 

Proxy. The attack was able to modify the associated PLC program. [82] presented an external 

non-PLC program to verify PLC code integrity before loading it to the associated PLC. The 

research work introduced examples of bad code practice that could be exploited by adversaries. 

Racing conditions, duplicate or missing outputs, unused tags were provided as examples of bad 

code practice. [83]  presented CLIK, a PLC logic attack. The attack consisted of bypassing 

security measures of a PLC, accessing and getting a binary copy of its code, decompiling the 

stolen binary code, and injecting a malicious code into the stolen one. Once the malicious code 

was injected, it was transferred and downloaded, as binary code, to the exploited PLC. [84] 

presented network attacks that manipulated memory values of PLC’s inputs. [85] presented 

malicious attacks on PLCs, “Denial of Engineering Operations”. The attacks were developed 

to access PLC code, retrieve a copy of it, modify it, recompile it, and downloaded back to the 

designated PLC. The process was accomplished without being detected by associated code 

designer software. As a countermeasure solution to detect malicious manipulations, a ladder 

logic decompiler termed ‘Laddis’ was introduced. Attacks in [86] were able to manipulate 

inputs and outputs of Siemen S7 PLC and remotely stopping it. [87] [88] introduced attacks 

that targeted Siemens S7 PLC code by retrieving the running ladder log code, decompiling it, 

manipulating it and transferring it back to the PLC in bytecode format. [89] presented attacks 

that targeted Siemens S7-300 PLCs and associated TIA data.  The authors injected interrupt 

code to attack the designated PLC Organization Block.  [90] presented ‘Shade’, a deep packet 

inspection (DPI) technique. Shade employs certain algorithm techniques to monitor PLC code 

and detect any evasion injected into designated ICS networks. [91] presented a ‘SABOT’ tool 

that instantiated malicious payloads on Siemens PLCs. The payloads could be arbitrary 

manipulations of the targeted PLC code. [92] presented “Harvey” rootkit that exploits PLCs’ 

firmware vulnerabilities to modify associated logic instructions. The malware was capable of 

monitoring and modifying PLC inputs received from field devices. Another rootkit to 

manipulate PLC’s I/O values was introduced in [93]. In [94] a NuSMV model to verify the 

integrity of PLCs’ function blocks, FB, code was introduced. [95] presented systematized 

knowledge of PLCs’ threats, vulnerabilities, and recommended countermeasures. PLCspecif 

was introduced in [96] to validate and improve PLC programs. [97] demonstrated a 

methodology based on ‘Cone of Influence’ and NuSMV models to verify PLC programs. In 
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[98] solutions were provided to verify safety program. [99] addressed a method to verify the 

integrity of PLCs’ structured language programs. [100] [101] [102] introduced methods and 

techniques to verify and validate running PLC programs. [103] introduced ‘Arcade’, a 

statistical tool, to evaluate different PLC programs. [104] introduced HyPLC, a compilation 

and verification tool to provide guarantee proper correctness of the PLC programs. 

Unlocked or unprotected PLCs create another vulnerability concern. Having an access point to 

a PLC allows user to upload any malicious code to the PLC, manipulate the current running 

one, or even upload new firmware. PLCs typically do not check whether the uploaded code is 

from a verified trusted source or not. Even with password protection, PLCs do not have enough 

defense mechanisms to stop attackers from retrieving or stop passing passwords [85] [91] [92]. 

[9] [11] [108] presented Stuxnet malware that severely attacked PLC-BS. Stuxnet was able to 

maliciously spy, attack, compromise, and even exploit other field devices to initialize attacks 

on other systems. By exploiting Siemens software and associated programs (HMIs - WinCC, 

PLC codes -Siemens Simatic Step7, PCs - Windows, etc.) and faking values, Stuxnet severely 

affected crucial field devices - taking advantage of multiple Windows zero days vulnerabilities 

[108]. Even though it was a malware that was specifically customized to target certain Siemens 

SCADA systems and programs, Stuxnet is just a typical threat that PLC-BS might face. In 

addition to Stuxnet attack, so many other attacks were carried out by other threats such as 

Flame, Guass, Duqu, Wiper, and BlackEnergy malware [39] [1]. There are more than 50 new 

Stuxnet-like attacks on SCADA threats discovered [109] [9] [10] [110]. Since Stuxnet’s 

appearance, PLC-BS have attracted the attention of the hacker crowd.  

General alarms analysis and management were discussed in [144] [146] [147] [148] [149] [150] 

[151] [152] [153] [154]. General recommendations and surveys were provided in [163] [164].  

All the above research papers never mentioned or used the PLC scan time to detect coder 

abnormalities. As a matter of fact, none of the previously introduced papers developed ladder 

logic programs to detect and stop code abnormalities within the respective PLC.  

 

7.3 PLC Scan  

7.3.1.1 PLC Scan Overview  

When a PLC is in “RUN” mode, the controller continuously scans all the listed routines of a 

program, unless it is not assigned by users to do so. It monitors all related physical and internal 

address inputs and energizes or deenergizes outputs according to the related instructions and 
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sequence of operation, see Fig. 7.1. For PLCs, such as Rockwell ones, a controller continuously 

scans each routine one at a time in the order they listed under “MainProgram”.  

 

 

 
Fig. 7.1. Scan cycle of a code. 

 

 

It starts scanning or executing each rung within a ladder logic routine starting from top to 

bottom left after scanning each rung from right to left, see Fig. 7.2. 

 

 

Fig. 7.2. Scan directions. 
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If the precondition instructions (such as inputs and comparative instructions) are “TRUE, the 

controller continuous to scan the reset of the rung (horizontally) to execute any available output 

instructions or other code elements (such as additions, counters, timers, etc.). If the 

precondition instructions of a rung are “FALSE”, the controller stops scanning the rest of the 

rung, i.e., doesn’t execute the rest of the instructions, and moves vertically down to scan the 

next rung.  The status or value of any input instruction is either based on an internal memory 

value within the PLC or based on incoming signals of field devices that are sent to the PLC’s 

input modules, see Fig. 7.3. “Outputs” are tags that are set based on evaluating or triggering 

internal memory values.  

The output values could be tied to physical addressed of a PLC’s output modules that control 

field devices such as motor or lights, see Fig. 7.3. 

In addition to scanning all the routines within a program, the PLC controller’s performs other 

tasks such as checking PLC diagnostics and communication related ones. Once done, the PLC 

controller repeats the scanning process again in a continuous manner; unless it gets interrupted 

or scheduled to run periodically. When a PLC gathers and reads all related inputs of a program, 

executes its code, and updates all its related outputs, then that is called a scan cycle. If the scan 

cycle scans all routines within a program is called a program scan cycle. While if it scans only 

a specific routine, then it is called a routine scan cycle. 

 
Fig. 7.3. Scan cycle. 
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7.3.1.2 PLC Scan Time 

The scan time is the time a controller spends to scan and execute a certain designated program 

or routine including scanning and updating related physical tags, memory-based tags, 

networks, and other associated tasks within a scan cycle. So, the more code elements a CPU 

has to scan and execute per cycle, the slower the scan time would be. A slower scan time means 

that the program scan cycle is taking longer which adversely affects controlled operations, like 

slower response time. In certain scenarios, when a scan time of a code significantly exceeds 

the normal allocated time by the CPU per cycle, the watchdog would be triggered, and the PLC 

would be faulted. A faulted PLC would stop any processes or operations controlled by the PLC.  

A PLC scan time can be divided into two types: program and routine. 

7.3.1.3 PLC System Overhead Time Slice 

The PLC (GuardLogix 5570) used in this experiment, as well as many other PLCs produced 

by Rockwell Automation, allows users to change the execution time - allocated by the CPU - 

of background tasks, including the continuous task of a program. The modification of the 

scheduled allotted time of the CPU is done by selecting different percentage of the system 

overhead time slice, as shown in Fig. 7.4.  

 
Fig. 7.4. Selecting a percentage of the time slice. 
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“Time slice” is the time that the CPU spends on unscheduled communication tasks, and its 

duration must not exceed one millisecond at a time. An unscheduled communication task is the 

task that is not configured through I/O configurations, such as communicating with logic 

designer software, communicating with HMIs, online edits, messages, etc. When time slice is 

modified, it changes the allocated time that a CPU spends in executing the continuous tasks 

(running the routines) and other background tasks.   

Time slice only interrupts the continuous task in favor of other unscheduled communication, 

(assuming no periodic or event tasks). For example, whenever the allotted “time slice” is 

increased, the amount of time for the CPU to execute unscheduled communication tasks at a 

time is increased and less time is given to execute the continuous task. So, the overall scan time 

requires more time than usual to finish running all the routines (within the continuous task). 

The relation between the time slice and the continuous task (such as scanning a routine) based 

on Rockwell documentations [169] [170] is as follows: 

 𝑻𝑺% = (
𝟏

𝑪𝑻+𝟏
) × 𝟏𝟎𝟎 () 

 

Where TS% is the percentage of “time slice” that is set manually. CT represents the time the 

continuous task spent to execute its tasks (the time needed to run its listed routines). A task 

must be at least 1 millisecond [169] [170]. 

Based on Equation (1), CT can be defined as follows: 

 𝑪𝑻 = (
𝟏𝟎𝟎

𝑻𝑺%
) − 𝟏 ()  

For example, if “TS%” is set to 10%, then CT gets 9 milliseconds to execute its code and 1 

millisecond would be dedicated to UCT (Unscheduled Communication Task), see Fig. 7.5 and 

Fig. 7.6.  

 

Fig. 7.5. CT and UCT during 10 milliseconds.  
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Fig. 7.6. A periodic duration of 10 milliseconds. 

 

For a given 40 milliseconds of a code to execute, CT spends 9 milliseconds per cycle, and the 

unscheduled communication background task spends 1 millisecond. So, the overall scan time 

of the code is 44 milliseconds: 4 milliseconds for the unscheduled communication task and 40 

milliseconds for the code execution.  When “TS%” is set to 20%, CT gets 4 milliseconds per 

cycle, and the unscheduled communication background task gets 1 millisecond. So, the 

controller must cycle at least 5 times for the CT to complete the execution of 40 millisecond 

designated code. That increases the overall scan time of the code to at least 50 milliseconds, 5 

milliseconds for the unscheduled communication task and 40 milliseconds for the code 

execution. Fig. 7.7 and Table 1 show more examples.  

 

Fig. 7.7. Overall scan time was affected by the modification of TS%. 
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Table 1. 

Scan times Value with Respect to CT and TS 

Scan time (ms) TS% CT (ms) 

44 10 9 

50 20 4 

53 25 3 

66 33 2 

80 50 1 

 

7.4 A Case Study: STC Test Bed 

7.4.1 Overview 

Based on our analyses, we found that the time a PLC normally spends in scanning a routine or 

a program within one cycle could be employed beyond its typical usage. A scan time of a 

routine could be used as a real-time indicator of its code behavior to detect if there are any code 

modifications. By getting the average time of several scan times of a code under normal 

conditions (no attacks or malicious code) and within a specific time interval, that average could 

be used as a reference point. When a code is modified, its actual scan time value would be 

different than that of the reference scan time value.  Generally, a faster or slower scan time 

might have critical consequences that adversely affect the automated process, devices, or staff, 

risking the whole system and environment. A change in a scan time could be because of one 

of the following:  

• A slow scan time occurs because a suspicious code of finite or infinite loops are 

embedded. 

• A slow scan time occurs if more code elements are embedded by adversaries to 

overload the PLC. 

• A fast scan time occurs because a portion of the ladder logic code is deleted by hackers 

or adversaries. 

• A slow overall scan time of the routines occurs because the overhead scan time slice is 

altered. 

• A physical deterioration of filed devices. For example, a gate is taking longer than usual 

to be closed or open. That would make the program wait more than usual for the 

device’s feedback before updating any related outputs. 
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7.4.2 Test Bed and Experiment Setup 

A real-time test bed experiment was introduced using a Rockwell GuardLogix 5570 controller, 

see Fig. 7.8.  STC, a ladder logic-based code, was developed to capture the scan time of a 

routine, named “Main”, per PLC cycle. The STC was designed to monitor, capture, and log the 

values of several scan time attempts of “Main” routine during a designated interval of time. 

Then, the average of the captured values was calculated. Initially, STC calculated the average 

scan time under normal and acceptable conditions to be used as a reference point. When the 

attack models were applied to “Main” routine, STC was able to log the new scan time values 

of the compromised routine and calculate the average scan time. By comparing the newly 

calculated average scan time of the compromised code to that of the reference average scan 

time, the attacks were detected. Once a discrepancy between the two compared values were 

found, STC setup warned operators and further scanning of “Main” routine or other associated 

routines were stopped. 

 

Fig. 7.8. Controller type. 

 

 

7.4.3 STC Setup  

To capture timestamps of “Main” routine’s scan time, STC used “WallClockTime”, an attribute 

of “GSV” instruction. “WallClockTime” is an independent timestamp, not affected by timer 

instructions, code behaviors, or scanning scenarios.  
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 The “WallClockTime” was added at the beginning and at the end of “Main” code to capture 

the elapsed time between two unique timestamps: the initial start of the scan and the end of it, 

see Fig. 7.9(a). Every time an initial timestamp was captured, by the beginning of the code 

execution, it got stored into the array “ScanStarted[0]”. And every time a timestamp value was 

captured by the end of the routine, it got stored into the array “ScanEnded[0]”, as shown in Fig. 

7.9(b). Then those two unique stored timestamps got subtracted to calculate the net scan value 

of that routine and to be stored into “Scan_Captured[0]”.  

 

 

 

(a) 

 

 

 

 

(b) 

Fig. 7.9 (a) Capturing the scan time of the routine in the beginning of the code. (b) Capturing 

the scan time by the end of the code and getting the time elapsed. 
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During each scan cycle, the new value of each scan time was monitored, captured, and stored 

in the array “ST_Values[30]”, as shown in Fig. 7.10. The values were not all the same. They 

varied but with marginal differences. 

 

Fig. 7.10. Storing values of scan time of “Main” routine 
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 A “FIFO” instruction was used to log 30 captured values in the PLC data registry, as shown 

in Fig. 7.11. The captured scan time values had some marginal variances, as shown in Fig. 

7.11. Because of such marginal variance, another code setup was introduced to calculate the 

average of all the 30 captured values using “CPT”, Comput, instruction. The calculated average 

was stored in “ScanAvg” tag, see Fig. 7.12.   

 

 

Fig. 7.11. Storing several scan time values using FIFO. 

 

 

Fig. 7.12. Calculating the average scan time of 30 instances. 
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The scan average of the “Main” routine during that instance was 528 microseconds, as shown 

in Fig. 7.12. “ScanAvg” would be used as a baseline reference of “Main” routine in this test 

bed. It indicates the acceptable time that a PLC typically spends in completing the scan of 

“Main” code in one cycle. In some scenarios, if a more consistent and accurate average value 

is needed, then more data should be captured during a longer extended period. 

Similarly, and after calculating “ScanAvg”, another setup was developed and embedded to 

capture any upcoming real-time scan time value of “Main” code, stored in “Scan_Captured[0]” 

tag, as shown in Fig. 7.13. Thirty captured values of “Scan_Captured[0]” during a designated 

time interval were stored in “ST_GVal[30]” array. A “FIFO” instruction was used to store 

those 30 scan values. The average of ST_GVal[30]” was stored in “STCapturedAvg” tag , as 

shown in Fig. 7.14.  

 

Fig. 7.13.  “FIFO” to store 30 real-time captured scan time values. 

 

 

Fig. 7.14. The average scan time value of new real-time values. 
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By comparing the “STCapturedAvg” of the ongoing scan time of “Main” to the reference 

average, “ScanAvg”, the logic would be able to detect any code abnormality and raise an 

alerting message if the value of “STCapturedAvg” was not within the acceptable range.  

7.5 Attacks Scenarios 

Several attack models were conducted to exploit vulnerabilities in “Main” code and 

compromise it. The attacks were applied while the ladder logic code of “Main” was running. 

The attack models used different approaches to compromise the code and affect its behavior. 

They are summarized as follows: 

• Embedding finite loops to slow down the scan time and overload the PLC. 

• Embedding more code elements to overload the PLC scan time. 

• Skipping portion of the code, i.e., skipping rungs that contained important instructions. 

• Deleting code elements within the targeted code. 

• Altering the overhead time slice system to significantly slow down the scan time of 

certain routines. 

• Tampering with the behavior of field devices which could lead to systems damages. 

The attacks were implemented while the PLC was continuously executing the code of “Main” 

routine. They achieved their intended purposes stealthily and without being detected.  

By analyzing the attack models, we found that they did not just affect the code but also affected 

the scan time of the compromised code as well, except the attack that was deployed to tamper 

with the behavior of a field device. The change in the values of the scan time was captured 

manually as shown in Fig. 7.15.  

 

Fig. 7.15. Checking the scan time of the overall program using the properties of the 

“MainProgram” that includes all routines. 

However, checking the scan time was limited since it only monitored the overall scan time of 

all the routine at once, and it was not accurate and reliable in certain cases. For instance, when 
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the percentage of the overhead “time slice” was increased, the overall scan time value did not 

show the changes in the scan time of certain routines. So, another method was introduced 

through our work which is discussed under “Countermeasures”, Section 7.6.  

The following are the attacks that were implemented and applied with detailed explanations: 

7.5.1 Attack 1: Embedding Finite Loops 

One of the techniques that was implemented to overload and slow down the scan time of a 

routine (or a program) was by embedding a simple finite loop code using “FOR” instruction, 

as shown in Fig. 7.16. The overall scan time of the routines was significantly increased, i.e., 

the scan time became much slower, once “FOR” was embedded. The slow scan time was 

manually verified based on the program properties, as shown in Fig. 7.17.  

 

 

 

Fig. 7.16. Embedding “FOR” instruction 

 

 

 

 

Fig. 7.17. Checking the scan time values after “FOR” was embedded. 

 

 

The “FOR” loop was implemented in several ways to slow down the scanning time and 

overload the PLC: 
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• The “FOR” loop called another routine “R01” for 200 times before scanning the rest of 

“Main” code.  

• The numbers of looping of “FOR” instruction were increased, “Step Size”, to 500 times 

not any further to guarantee not to trigger the PLC watchdog. For example, when the 

step size of a loop was set to 1000, the watchdog was triggered and faulted the PLC, as 

shown in Fig. 7.18 and Fig. 7.19. 

• More loops were embedded to the code. 

The logic neither detected the slower scanning nor reported the abnormal code element that 

caused a slower scan time. 

 

 

Fig. 7.18. PLC was faulted when “FOR” was set to a high value. 
 

 

Fig. 7.19. Fault description after “FOR” was set to a high value. 

 

7.5.2 Attack 2: Skipping Ladder Logic Rungs 

Skipping portion of “Main” code was implemented by adding two instructions: “JMP” (Jump) 

and “LBL. The instructions were embedded while the PLC code was being executed without 

interrupting its continuous scanning. Once the PLC executed the rung that contained “JMP”, 

the controller skipped all the code after JMP instruction to the rung that started with “LBL” 

instruction and executed the rest of the code, see Fig. 7.20. Skipping rungs and associated code 

elements decreased the scanning time of “Main” routine since the overall program became 122 

microseconds, see Fig. 7.21. That value was obtained by manually checking the overall scan 

time of all routines.  The PLC was incapable of determining whether such skipping is 
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acceptable or suspicious. Also, the PLC never reported that a change of code or a scan time 

happened. Skipping code elements would have serious implications on the system and safety 

workplace. 

 

 

 

Fig. 7.20. Using JMP to skip ladder logic rungs. 

 

 

 

 

Fig. 7.21. The overall scan time of all routines after embedding JMP. 

 

 

 

 

7.5.3 Attack 3: Deleting Code Elements. 

In this critical scenario, several rungs of the running ladder logic code were deleted while the 

PLC was in “RUN” mode. The PLC compiler accepted the deleted code without reporting any 
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warning or interrupting the execution of the running code. By manually checking the overall 

scan time of the PLC program, the scan time was much faster, see Fig. 7.22.  Based on this 

portion of the code was stealthily deleted while the PLC could not detect any of its threat. It 

had no way to distinguish whether the deletion was acceptable or suspicious.  A tampered logic 

would risk critical safety operations, functionalities, or processes. 

 

 

 

Fig. 7.22. The overall scan time of all routines after deleting code elements. 

 

 

 

 

7.5.4 Attack 4: Embedding more Code Elements Mimicking Payload Code 

In this attack, a couple rungs of code that had mathematical instructions, “XPY” (X to the 

Power of Y) were embedded, as shown in Fig. 7.23, which could be also replaced by any 

malicious payload code. Though the new code was embedded stealthily and not detected by 

the PLC, it turned out that it affected the overall scan time of the PLC program when the scan 

time was manually checked, see Fig. 7.24. 
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Fig. 7.23. Embedding code elements using “XPY” instruction. 

 

 

 

Fig. 7.24. Checking the scan time values after more code was embedded. 

 

7.5.5 Attack 5: Modifying PLC Time Slice 

While the PLC was running, the System Overhead Time Slice (SOTS), or for simplicity called 

“time slice,” was changed from 10% to 90%. The modification of the SOTS was done by 

selecting a new percentage value from the drop-down menu, as shown in Fig. 7.25. The overall 
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scan time of all routines did not show any changes. But the scan time of all the tasks, including 

background ones, was tremendously increased (from 5.95 milliseconds to 81.04 milliseconds), 

as shown in Fig. 7.26. The modification of the new time slice was neither detected by the PLC 

nor was it reported. That would have an enormous impact on the PLC responses when it comes 

to communicating to other devices or monitoring fast devices such as servo drives or encoders. 

 

 

Fig. 7.25. Setting the “Time Slice” to 90% 

 

 

 

Fig. 7.26. The overall scan time of all tasks was significantly increased. 
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7.5.6 Attack 6: Tampering with the Behavior of Field Devices 

The previously explained STC techniques can be used to detect any modifications of field 

devices, especially of the attacks targeted deleting any timer- based logic. But to enhance the 

security if the field devices code more techniques are introduced in this section. 

Initially, an attack was deployed to compromise the functionalities of field devices by 

tampering with their ladder logic code setup to exploit their behaviors. The test bed developed 

in this experiment was a typical ladder logic setup of a pneumatic pin, targeting its extending 

and retracting operations. The attack was set to compromise either the outputs or the inputs of 

the pin through its logic code. A pin, typically, has two inputs (extended and retracted) and two 

outputs commanded by the PLC code (to extend and to retract), as shown in Fig. 7.27. 

Normally, whenever the pin ladder logic code commands a pin to extend (engage), the pin 

should be extended (engaged). And when the pin is commanded to retract (disengaged) it 

should be retracted (disengaged). The pin status (whether extended or retracted) should be 

reported back to the PLC, as shown in Fig. 7.28. The relation between a PLC and the pneumatic 

pin (as well as some other actuators) is not a direct closed loop, it must be properly coded. For 

instance, a typical code that cares more about the functionalities of the pin, it would not check 

and confirm the proper status of a pin without taking into consideration vulnerabilities that 

could be coming from bad code practice, attacks, or physical device deterioration.  

 

Fig. 7.27. Pneumatic Pin with hardwire diagram. 
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Fig. 7.28. Ladder logic Setup of a Pin. 

 

 

Based on the deployed attack, the ladder logic code of the pin was vulnerable and compromised 

without interrupting any code execution. The following is a list of vulnerabilities that might be 

exploited: 

• Swapping Statuses 

• Swapping Outputs 

• Embedding Always ON status 

• Embedding Always OFF status 

• Deleting Outputs 

• Delaying status 

• Delaying Outputs 

 

 

a) Swapping Statuses Attack 

This attack compromised the ladder logic code of the pin by tampering with its statuses. The 

two statuses of the pin (extended and retracted) were edited and swapped while the logic code 

was running. The extended status bit was swapped with the retracted status bit, as shown in 

Fig. 7.29. So, the logic of the pin was reading extended while physically it was retracted, and 

vice versa. This attack would severely affect any process or functionalities associated with that 
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device. Relying on wrong device status would have devastating consequences in certain 

scenarios depending on the critical role of the compromised field devices. 

 

 

 

 

(a) 

 

 

 

(b) 

Fig. 7.29. (a) Logic setup to monitor whether the pin was extended or retracted. (b) The inputs 

were swapped while the logic was running. 
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b) Swapping Outputs Attack 

This attack targeted the outputs. The outputs in the pin logic code were swapped to fool the 

process and create damage. The command that was responsible for extending the pin was 

modified to retract it instead. And rather than commanding the pin to retract, the pin code was 

modified to extend, as shown in Fig. 7.30. 

The PLC did not detect such modification, and it was implemented without any need to 

recompile the overall running PLC program. 

 

 

 

(a) 

 

 

(b) 

Fig. 7.30. (a) Logic setup to extend or retract a pin. (b) The outputs were swapped while the 

logic was running 
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c) Embedding “Always ON” Status Attack 

The attack embedded two bits to make both statuses (inputs) of the pins ON, i.e., always 

extended and retracted at the same time, as shown in Fig. 7.31(a).  

Another method to make both inputs ON was by embedding an empty branch in parallel of all 

precondition instructions, see Fig. 7.31(b). The controller was not able to detect those 

modifications. 

 

 

 

(a) 

 

 

(b) 

Fig. 7.31. (a)  Forcing the status bit to be always ON. (b) An empty branch was used to bypass 

any preconditions. 
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d) Embedding “Always OFF” Status Attack 

The target of this attack was to alter one of the statuses (inputs) in the pin code by disabling it 

to create damage in the system. For instance, one of the inputs was set to be deenergized (OFF) 

all the time.  That means the PLC was reading that the pin was always extended but never 

retracted, as shown in Fig. 7.32. The logic code was not able to detect such abnormal behavior.  

 

 

Fig. 7.32. Forcing the status bit of the pin to show not retracted regardless of the actual device 

feedback. 

e) Deleting Outputs Attack 

The deployed attack was implemented to delete one of the outputs of the pins without 

interrupting the running code. It replaced one of the outputs with “NOP” instruction. “NOP” is 

an instruction that does not perform any operation, as shown in Fig. 7.33.  

The deletion of the output and replacing it with “NOP” was implemented without faulting the 

controller or getting detected. 

 

 

Fig. 7.33.  Deleting one of the outputs to prevent commanding the pin to retract. 
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f) Delaying Status Attack 

A timer delay instruction, TON -Timer ON Delay, was embedded in this attack to delay reading 

the statuses of the pin, as shown in Fig. 7.34. The attack was able to delay the real-time 

monitoring by 2 seconds. Implementing this threat was done while the PLC was executing the 

associated code and was not detected by the controller. Such delay would risk the system safety 

and reliability since delaying the real-time response would impact critical processes. 

 

 

Fig. 7.34. Delaying a status of the pin 

 

g) Delaying Outputs Attack 

A TON (Timer ON Delay) instruction was embedded to delay energizing the outputs of the 

pin, as shown in Fig. 7.35. The attack made the PLC controller wait longer before executing 

next associated operations. Implementing this threat did not require any overall program 

download or recompiling. Delaying the statuses would risk the system if a quick real-time 

response is critical. 

 

Fig. 7.35. Delaying the output for 2 seconds before energizing it. 
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7.6 Countermeasures 

7.6.1 Countermeasures Against Infinite Loops  

This method was implemented based on the scan time code discussed in Section STC Setup. A 

ladder logic was developed to detect the suspicious finite loops based on the scan time code. 

The embedded attack of finite loops made the PLC spend more time in finishing the execution 

of that exploited routine.  

By capturing the new scan time of the compromised routine and comparing it to the reference 

average scan time “ScanAvg”, previously calculated, the PLC detected the code abnormalities.  

To enhance this countermeasure, several scan-time values, 30 values, within a designated 

duration were captured, as shown in Fig. 7.36.  

 

 

Fig. 7.36. Capturing several scan-time values after embedding “FOR”. 
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Then, the average scan time of the exploited code was calculated and stored in 

“STCapturedAvg” array element, as shown in Fig. 7.37. The average scan time, 

“STCapturedAvg”, of the compromised code was significantly higher than that of the reference 

average “ScanAvg”, 1336 microseconds compared to 528 microseconds, as it was previously 

shown in Fig. 7.12.  

 

 

Fig. 7.37. Capturing the average of the scan time after embedding “FOR” instruction. 

This countermeasure solution was able to detect other related finite loops attacks based on the 

scan time values as well, see shown in Fig. 7.38.  

 

 

 

Fig. 7.38. Capturing a higher scan time value after increasing number of loops. 
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Fig. 7.39. Average scan time after embedding another “FOR” loop. 

 

 

 

The average of other finite loops attacks was calculated as well, see Fig. 7.39 and Fig. 7.40.  

 

Fig. 7.40. The average scan time after increasing the loop size. 
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Every time the countermeasure code detected a discrepancy between “ScanAvg” and 

“STCapturedAvg”, it stopped further scanning of the code and warned operators, as shown in 

Fig. 7.41. 

 

 

 

Fig. 7.41. Stopping further code scanning. 
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7.6.2 Countermeasures Against Skipped Code Attack 

This countermeasure solution used a ladder logic trap based on scan time setup to detect the 

suspicious skipping of code elements within the “Main” routine. The countermeasure code 

monitored and captured the new scan time average of the exploited code and calculated its 

average based on 30 scans, as shown in Fig. 7.42. The average scan time of the exploited code, 

“STCapturedAvg”, was 9 microseconds, much lesser than that of the reference average value, 

“ScanAvg”.  By comparing both averages, the code abnormality was detected, and further logic 

was not allowed. 

 

 

Fig. 7.42. Calculating the average of the scan time after a JMP instruction was embedded. 
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7.6.3 Countermeasures Against Deleted Code Attack 

After monitoring 30 scan time values of the compromised code and calculating the average, 

“STCapturedAvg”, this method detected the code exploitation, see Fig. 7.43. The 

“STCapturedAvg” was 20 microseconds which was less than that of the stored reference 

average, “ScanAvg”. Once detected, the controller stopped further code scanning and alerted 

operators. 

 

 

 

Fig. 7.43. Calculating the average of the scan time after code elements were deleted. 
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7.6.4 Countermeasure Against Embedding more Code Elements 

Similar to the previous countermeasure solution, several scan time values of the exploited code 

were captured, and then the average was calculated and stored in “STCapturedAvg” array, as 

shown in Fig. 7.44 and Fig. 7.45.  

 

 

Fig. 7.44.  The average scan time value after embedding more code elements. 

 

 

The average scan time of the exploited code, “STCapturedAvg”, was 979 microseconds, and 

the was compared to the reference average, “ScanAvg”. By comparing the two averages, the 

countermeasure solution detected the suspicious code and stopped further logic scanning of the 

routine. 
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Fig. 7.45.  Several scan time values were captured after embedding more code elements. 
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7.6.5 Countermeasure Against Altered Scan Time Slice 

When the system overhead time slice was modified to 80%, the introduced STC was able to 

detect it. The countermeasure solution monitored and captured 30 scan values, calculated the 

average. The average scan time, “STCapturedAvg”, of the compromised program was 

compared to the reference average to stop further scanning and warn staff. The modification of 

the time slice drastically affected the overall scan time, as shown in Fig. 7.46. The exploitation 

of the time slice raised the scan time to an average of 10734 microseconds.   

 

 
Fig. 7.46. The average of the scan time after TS% was increased. 
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7.6.6 Countermeasure Against Devices Behavior Attack 

The stealthy attack scenarios that were applied to the pin code example were detected by this 

countermeasure solution based on using TON (timer) instruction and monitoring non-exclusive 

pin behavior state. The TON instruction was used to detect whether the pin was extending or 

retracting during an acceptable window of time, as shown in Fig. 7.47.  

 

 

 

Fig. 7.47. Check if the pin was extended within 2000 milliseconds. 

 

The code, in Fig. 7.47, also prevented commanding the pin to retract or extend at the same 

time. Another approach was used to detect a non-exclusive status indication. It checked that 

the pin status was either extended or retracted. When the pin indicated two statuses, extended 

and retracted, at the same time, as shown in Fig. 7.48 or Fig. 7.49, then operators were warned. 

 

 

Fig. 7.48. Check if the pin was extended and retracted at the same time after 2000 milliseconds 

were elapsed. 
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Fig. 7.49. Check if the pin was not extended and not retracted at the same time after 2000 

milliseconds were elapsed. 
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7.7 Results and Discussion 

A test bed with several stealthy attack scenarios was introduced and implemented to expose 

the vulnerabilities of the PLC code. Then countermeasure solutions were introduced and 

successfully detected and prevented those applied threats. 

 

7.7.1 Scan Time Analysis 

The countermeasure solutions were mainly based on several STC setups. They were 

implemented and successfully detected and prevented real attacks that could be embedded by 

adversaries within the PLC code.  Six attack models were applied within the PLC code.  

The attacks were able to exploit and compromise the PLC code without being detected by the 

controller. The PLC was defenseless in detecting or exposing the attacks or other similar 

vulnerabilities. It did not have any defense mechanisms to detect or even prevent such attacks 

or other vulnerabilities. The role of the controller was only to verify the validity of the code 

elements and syntaxes, as shown in Fig. 7.50. 

   

 

Fig. 7.50. A typical PLC scan cycle without any defense mechanisms. 

 

The objective was to create a defensive code within the PLC code to detect and prevent attacks. 

The defensive mechanism was based on scan time of the targeted routine, as shown in Fig. 

7.51.  
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Fig. 7.51. Adding a defense mechanism to detect code abnormalities. 

 

By analyzing the attacks that were deployed, we found that five out of them significantly 

affected the scan time. Therefore, the introduced countermeasures were designed to compare a 

stored, reliable average scan of a routine to any newly monitored ones. If discrepancies were 

to be found, the controller stopped further scanning and warned operators. 

Real-time trends that captured and analyzed real-time scan time values of “Main” routine were 

conducted as well. They were used to validate and analyze the changes in the values of the scan 

time of “Main” Routine during a designated period.  

The trends of the scan times were compared to the captured average values conducted in our 

experiments and they were within expectations. 

Each trend captured more than 60 real-time values of the “Main” routine scan time, 

“Scan_Captured[0]”. The values were captured and analyzed during a 400-millisecond 

interval.  
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Under normal conditions, the values of the captured scan time values were around 530 

microseconds, as shown in Fig. 7.52. That was close to the previously calculated reference 

average, see Fig. 7.12. 

 

Fig. 7.52. The captured scan time values were around 530 microseconds during 1 millisecond 

duration. 

 

For the compromised “Main” routine, affected by the “FOR” loops, the scan time values where 

around 1360 microseconds, as shown in Fig. 7.53. That was close to the reference average, 

previously calculated in our test bed experiment, see Fig. 7.37. 

 

 

Fig. 7.53. The captured scan time values were around 1360 microseconds during 1 millisecond 

duration. 
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The scan time values of the compromised “Main” routine, attacked by skipping rungs, were 

around 8 microseconds, as shown in Fig. 7.54. The values are within the range of the reference 

average, see Fig. 7.42. 

 

 

 

Fig. 7.54. The captured scan time values were around 8 microseconds during a 1 millisecond 

duration. 

 

 

The Scan time values of the compromised “Main” routine, which had more code elements 

embedded to it, were around 930 microseconds, as shown in Fig. 7.55. That was close to the 

calculated reference value, as shown in Fig. 7.44. 

 

 



150 

 

 
Fig. 7.55. The captured scan time values were around 930 microseconds. 

 

 

The Scan time values of the compromised “Main” routine, that had portion of the code deleted, 

were around 18 microseconds, as shown in Fig. 7.56. The captured results shown in this trend 

during a 1 millisecond interval was close to the calculated reference value, as it was previously 

shown in Fig. 7.43. 

 

Fig. 7.56. The captured scan time values were around 18 microseconds during a 400-millisecond 

duration. 
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The Scan time values of the compromised code, “Main” routine which was affected by 

modifying the time slice to 80%, were around 10,000 microseconds, as shown in Fig. 7.57. 

That captured values showed in the real-time trend was close to the previously calculated 

reference, shown in Fig. 7.46.  In this test the more percentage, 80%, of the time slice was 

given to tasks other than continuous tasks. 

 

 

Fig. 7.57. The captured scan time values were around 10000 when the TS% was increased to 

80%. 

 

7.7.2 Analyzing Devices Deterioration and Tampering 

For the sixth attack model that had to do with tampering with the field devices behavior, a 

suggested pin code setup was introduced and applied mitigate and prevent abnormalities. In 

addition to its role in detecting code abnormalities, the provided solution would be also 

applicable in detecting any physical deterioration of the pin or other similar devices The 

countermeasure solution was mainly based on two major factors. The first factor was based on 

a timer, “TON”. The timer was used to check the duration between sending a signal to the pin 

(commanding the pin to extend or retract) and the feedback coming from the pin (whether it 

was extended or retracted). Whenever the duration took more than the designated time (2000 

milliseconds), an alarm was activated. The second important factor was to detect that there was 

always an exclusive status indicator of the pin reported to the PLC, either retracted or extended. 
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7.7.3 Limitations and Considerations 

During the conducted experiment, monitoring and capturing the scan time of a PLC routine 

required novel techniques that had to be developed and implemented.   

The following is a summary of the PLC limitations: 

• The captured scan time values of a routine were inconsistent and not always the same 

per scan cycle. That was because they were captured in microseconds and under on-

going different factors and conditions. Because of such discrepancies, our code did not 

depend on one captured value of a scan time but took the average of 30 values within a 

designated duration of time.  To get more accurate average readings for real industrial 

environment, more data to be collected over more extended period.  

• All the kinds of timers whether they are retentive (RTO) or non-retentive (TON and 

TOF-Timer OFF Delay) could not be utilized for timing a process that was faster than 

1 millisecond. So, the timer instructions were useless when it comes to measuring the 

time of any code executions that were, typically, faster than 1 millisecond. So, provided 

timers were not useful in detecting scan time of code per scan cycle.  

• The GuardLogix 5570 controller had no built-in instructions to capture the scan time of 

a specific routine. Because of such limitations the STC was developed and used. 

• The only available feature that we were able to utilize in this test bed was the GSV 

instruction that is limited to capture the scan time of the “MainProgram”, i.e., the 

overall scan time of all the routines at once - as shown in Fig. 7.58 and Fig. 7.59.  

Relying on the overall scanning time was not applicable to certain scenarios especially 

if more accurate analysis and specific detection were needed for a particular routine or 

a task. Also, relying on the overall scan time of all routines was not always reliable and 

valid. For instance, when the TS% was increased to 80%, the overall scan time showed 

no abnormal scan time value, but the STC was able to capture the increase in the scan 

time whenever it affected a particular routine since it was monitoring the scan time at 

the routine level. 
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Fig. 7.58. Checking the scan time of the overall program from the logic code using GSV 

instruction. 

 

 

 
Fig. 7.59. Another way to check an overall scan time of the program during the experiment.  
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7.8 Conclusion 

After setting up a real-time test bed based on ladder logic code, several vulnerabilities in the 

PLC code were exposed and exploited. The designated PLC was defenseless in detecting or 

protecting against any of the code exploitations.  The exploitation of the code was achieved by 

developing and implementing six attack models that were deployed while the PLC code was 

running.  The attacks were stealthy in compromising the targeted ladder logic code without 

being detected or prevented by the PLC though they modified the running code. All of the 

proposed attacks could be carried on and deployed to any other PLC based systems, causing 

critical consequences to associated ICS. The attacks used different techniques for different 

scenarios. 

On the other hand, several countermeasures against those six attack models were introduced. 

The countermeasures were mainly based on two factors. The first one, STC, was based on 

capturing and analyzing the scan time of the running code of a particular routine. Several scan 

time values were captured under good, normal conditions and their average was calculated and 

used as a reference average. The reference average calculated by STC was used in ongoing 

comparison with every scan time value of a particular routine per PLC cycle. Whenever a 

discrepancy was found, the controller stopped further code execution and warned staff. 

The second factor was about validating field devices behaviors, such as pins or clamps. Several 

vulnerabilities in the ladder logic code were exposed and a countermeasure, based on ladder 

logic code, against them was introduced. The countermeasure was able to detect and prevent 

devices abnormalities, whether it was because of a regular physical deterioration scenario or a 

cyber-attack. 

The main challenge we faced in this experiment was to capture the time a PLC would spend in 

executing a routine per cycle. Capturing the scan time of a routine per cycle was critical to 

analyze any code modifications of abnormalities. A typical Rockwell PLC, like the one used 

in our test bed, could only provide the scan time of “MainProgram”, including the scan time of 

all routines. That was not useful in analyzing the scan time of a particular routine or code. Also, 

the experiment proved that the overall scan time of “MainProgram”, provided by GSV, was 

not accurate when the overhead time slice was drastically modified.  To resolve the limitation 

of the GSV, a STC was introduced to capture the scan time value of any particular routine or 

code. 
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Chapter 8  Conclusions and Future Work 

  

It is proven through this work that PLC codes are vulnerable, and our contributed work was 

capable to mitigate certain vulnerabilities within PLCs codes without the need of third-party 

solutions or external tools. PLCs, by design, do not have built in features that could enable 

them to detect malicious code attacks, manipulations, or undesired behaviors. PLCs typically 

rely on external security perimeters to reduce vulnerabilities and threats. So, adversaries who 

might get access to a PLC, could manipulate the code without being detected. Due to the 

limitations of the PLCs’ OS and the absence of antivirus, unique code techniques were provided 

in this work. Those techniques could be embedded to any PLC code to enhance its security 

level. 

They are focused on enhancing the security of the ladder logic code within a PLC to make it 

self-aware of any code vulnerabilities or suspicious code behavior. It provided code solutions 

that equipped PLCs with self-defense mechanisms to detect and prevent certain code threats, 

cyber-attacks, and inadvertent code practice. 

This research work provided real-time novel countermeasures against exploitation of those 

vulnerabilities. The novel contribution against PLC code exploitation was addressed by 

developing several real-time techniques that could be embedded to PLC code to detect and 

prevent suspicious code modifications and behaviors within PLC routines. Those techniques 

were, mainly, based on developing a code, STC, that could capture, monitor, and analyze the 

scan time value during the execution of a particular code, routine, or overall program. The STC, 

a ladder logic-based code, was designed and implemented while the PLC was running without 

interrupting any running code.  

While [13] claimed that monitoring the runtime of a payload program is impossible, the STC 

setup described in this thesis was able to monitor the time a PLC spent in executing a particular 

code and utilized it to detect code abnormal behaviors. The introduced STC setup was able to 

detect and prevent several attacks that targeted a PLC running code by monitoring the 

execution time of the targeted code. When the scan time of the compromised code took more 

or less than the preferred average, the PLC stopped scanning further code and warned staff. 

The attacks used in our test bed were developed and deployed to a real-time ladder logic code, 

based on Rockwell Automation PLC. They used different scenarios and malicious techniques 

to expose and exploit PLC code vulnerabilities. Those cyber-attacks were successful and 
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stealth. They achieved their purpose of modifying and compromising the targeted PLC code 

without being detected and without interrupting any running code execution.  

Some attacks were able to manipulate and fake the status of field devices through PLC code. 

Other attacks were able to overload, delete, or skip certain PLC code. Other stealthier attacks 

were able to suppress alarms. 

This research also exposed some vulnerabilities in PLC alarms code, i.e., the ladder logic code 

responsible for raising or triggering alarm messages to alert staff and operators. Four real-time 

and stealth attacks were introduced and deployed targeting a running PLC alarms code. The 

attacks stealthily manipulated the PLC alarms code and suppressed them fooling staff that 

system has no faults or issues. The attacks were embedded to a running PLC code without 

being detected, that could cause significant damage if it were to be deployed to infrastructure 

or public facilities. Several effective countermeasure solutions against the described attacks 

were introduced: scan time code, heartbeat code, and verification guidelines of alarms and 

designated physical devices. 

In addition to providing details of some major fundamental ladder logic code vulnerabilities 

threats, and actual documented incidents, general recommendations to enhance the security of 

PLCs’ code were presented. 

The main challenge faced in this work was in capturing the runtime execution of a particular 

code or the time a PLC would spend in executing a routine per cycle because typical PLCs are 

not capable of capturing time intervals in microseconds.  

One of Our future goals is to expand our work to develop PLCs-aware code that detect code 

abnormalities and vulnerabilities. Currently, PLCs are only used as controller executers 

without detecting malicious code or attacks. Our provided STC solutions could be redesigned 

to detect more code abnormalities and vulnerabilities.  

Moreover, the provided STC model would be a good starting point in forensic data analysis. 

The absence of forensic data is another challenging weakness of PLCs. By using our provided 

STC logic model, the logic would be able to have adequate and detailed forensics because of 

the logged captured scan times of PLC routines. Forensics collected directly from PLCs would 

help in uncovering the traces of certain malicious code that affect the scan time of a routine or 

a program as discussed in the work.  

Another future work is to customize our provided STC solutions along with PLC suppressed 

alarms detection code to prevent similar Maroochy Shire cyber events from occurring against 

industrial companies [28] [8] [143]. Companies lack the proper means to verify scan time of 

individual routines or to detect code abnormalities. The provided solutions in this work could 



157 

 

be a simple code methodology that can be deployed to any PLC program to keep PLC code 

secure and less vulnerable. 

Nevertheless, this work could be enhanced to get integrated with emerging technologies such 

as Artificial Intelligence (AI) or predictive maintenance. Monitoring and logging the behavior 

of PLC code through the provided STC solutions could be utilized to create valuable datasets. 

The datasets could be used by another third-party programs to suggest and predict typical 

possible vulnerabilities, threats, and proper countermeasure solutions of designated PLC-BS 

devices or PLC code that a company is operating or wants to add on.  

Finally, it would be beneficial to make a detailed document that includes systematization and 

taxonomy of all attacks and vulnerabilities of PLC-BS. The document could be used in 

generating recommendations and guidelines to enhance ICS recommended standards. The 

document would be based on our provided work in addition to other emerging threats, 

vulnerabilities, and countermeasure solutions.
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