348 research outputs found

    OSS architecture for mixed-criticality systems – a dual view from a software and system engineering perspective

    Get PDF
    Computer-based automation in industrial appliances led to a growing number of logically dependent, but physically separated embedded control units per appliance. Many of those components are safety-critical systems, and require adherence to safety standards, which is inconsonant with the relentless demand for features in those appliances. Features lead to a growing amount of control units per appliance, and to a increasing complexity of the overall software stack, being unfavourable for safety certifications. Modern CPUs provide means to revise traditional separation of concerns design primitives: the consolidation of systems, which yields new engineering challenges that concern the entire software and system stack. Multi-core CPUs favour economic consolidation of formerly separated systems with one efficient single hardware unit. Nonetheless, the system architecture must provide means to guarantee the freedom from interference between domains of different criticality. System consolidation demands for architectural and engineering strategies to fulfil requirements (e.g., real-time or certifiability criteria) in safety-critical environments. In parallel, there is an ongoing trend to substitute ordinary proprietary base platform software components by mature OSS variants for economic and engineering reasons. There are fundamental differences of processual properties in development processes of OSS and proprietary software. OSS in safety-critical systems requires development process assessment techniques to build an evidence-based fundament for certification efforts that is based upon empirical software engineering methods. In this thesis, I will approach from both sides: the software and system engineering perspective. In the first part of this thesis, I focus on the assessment of OSS components: I develop software engineering techniques that allow to quantify characteristics of distributed OSS development processes. I show that ex-post analyses of software development processes can be used to serve as a foundation for certification efforts, as it is required for safety-critical systems. In the second part of this thesis, I present a system architecture based on OSS components that allows for consolidation of mixed-criticality systems on a single platform. Therefore, I exploit virtualisation extensions of modern CPUs to strictly isolate domains of different criticality. The proposed architecture shall eradicate any remaining hypervisor activity in order to preserve real-time capabilities of the hardware by design, while guaranteeing strict isolation across domains.Computergestützte Automatisierung industrieller Systeme führt zu einer wachsenden Anzahl an logisch abhängigen, aber physisch voneinander getrennten Steuergeräten pro System. Viele der Einzelgeräte sind sicherheitskritische Systeme, welche die Einhaltung von Sicherheitsstandards erfordern, was durch die unermüdliche Nachfrage an Funktionalitäten erschwert wird. Diese führt zu einer wachsenden Gesamtzahl an Steuergeräten, einhergehend mit wachsender Komplexität des gesamten Softwarekorpus, wodurch Zertifizierungsvorhaben erschwert werden. Moderne Prozessoren stellen Mittel zur Verfügung, welche es ermöglichen, das traditionelle >Trennung von Belangen< Designprinzip zu erneuern: die Systemkonsolidierung. Sie stellt neue ingenieurstechnische Herausforderungen, die den gesamten Software und Systemstapel betreffen. Mehrkernprozessoren begünstigen die ökonomische und effiziente Konsolidierung vormals getrennter Systemen zu einer effizienten Hardwareeinheit. Geeignete Systemarchitekturen müssen jedoch die Rückwirkungsfreiheit zwischen Domänen unterschiedlicher Kritikalität sicherstellen. Die Konsolidierung erfordert architektonische, als auch ingenieurstechnische Strategien um die Anforderungen (etwa Echtzeit- oder Zertifizierbarkeitskriterien) in sicherheitskritischen Umgebungen erfüllen zu können. Zunehmend werden herkömmliche proprietär entwickelte Basisplattformkomponenten aus ökonomischen und technischen Gründen vermehrt durch ausgereifte OSS Alternativen ersetzt. Jedoch hindern fundamentale Unterschiede bei prozessualen Eigenschaften des Entwicklungsprozesses bei OSS den Einsatz in sicherheitskritischen Systemen. Dieser erfordert Techniken, welche es erlauben die Entwicklungsprozesse zu bewerten um ein evidenzbasiertes Fundament für Zertifizierungsvorhaben basierend auf empirischen Methoden des Software Engineerings zur Verfügung zu stellen. In dieser Arbeit nähere ich mich von beiden Seiten: der Softwaretechnik, und der Systemarchitektur. Im ersten Teil befasse ich mich mit der Beurteilung von OSS Komponenten: Ich entwickle Softwareanalysetechniken, welche es ermöglichen, prozessuale Charakteristika von verteilten OSS Entwicklungsvorhaben zu quantifizieren. Ich zeige, dass rückschauende Analysen des Entwicklungsprozess als Grundlage für Softwarezertifizierungsvorhaben genutzt werden können. Im zweiten Teil dieser Arbeit widme ich mich der Systemarchitektur. Ich stelle eine OSS-basierte Systemarchitektur vor, welche die Konsolidierung von Systemen gemischter Kritikalität auf einer alleinstehenden Plattform ermöglicht. Dazu nutze ich Virtualisierungserweiterungen moderner Prozessoren aus, um die Hardware in strikt voneinander isolierten Rechendomänen unterschiedlicher Kritikalität unterteilen zu können. Die vorgeschlagene Architektur soll jegliche Betriebsstörungen des Hypervisors beseitigen, um die Echtzeitfähigkeiten der Hardware bauartbedingt aufrecht zu erhalten, während strikte Isolierung zwischen Domänen stets sicher gestellt ist

    Modeling User-Affected Software Properties for Open Source Software Supply Chains

    Get PDF
    Background: Open Source Software development community relies heavily on users of the software and contributors outside of the core developers to produce top-quality software and provide long-term support. However, the relationship between a software and its contributors in terms of exactly how they are related through dependencies and how the users of a software affect many of its properties are not very well understood. Aim: My research covers a number of aspects related to answering the overarching question of modeling the software properties affected by users and the supply chain structure of software ecosystems, viz. 1) Understanding how software usage affect its perceived quality; 2) Estimating the effects of indirect usage (e.g. dependent packages) on software popularity; 3) Investigating the patch submission and issue creation patterns of external contributors; 4) Examining how the patch acceptance probability is related to the contributors\u27 characteristics. 5) A related topic, the identification of bots that commit code, aimed at improving the accuracy of these and other similar studies was also investigated. Methodology: Most of the Research Questions are addressed by studying the NPM ecosystem, with data from various sources like the World of Code, GHTorrent, and the GiHub API. Different supervised and unsupervised machine learning models, including Regression, Random Forest, Bayesian Networks, and clustering, were used to answer appropriate questions. Results: 1) Software usage affects its perceived quality even after accounting for code complexity measures. 2) The number of dependents and dependencies of a software were observed to be able to predict the change in its popularity with good accuracy. 3) Users interact (contribute issues or patches) primarily with their direct dependencies, and rarely with transitive dependencies. 4) A user\u27s earlier interaction with the repository to which they are contributing a patch, and their familiarity with related topics were important predictors impacting the chance of a pull request getting accepted. 5) Developed BIMAN, a systematic methodology for identifying bots. Conclusion: Different aspects of how users and their characteristics affect different software properties were analyzed, which should lead to a better understanding of the complex interaction between software developers and users/ contributors

    Performance Implications of Stage-Wise Lead User Participation in Software Development Problem Solving

    Get PDF
    The problem-solving view of new product development sees the innovation process as a series of problem-solving loops broken down into three stages: problem detection, analysis and removal. We link this framework with lead user-driven innovation regarding software and show that effort by lead users (LUs) in each stage of the innovation problem solving process is, in varying degrees, associated with the source code’s quality, the productivity of the development process and the software’s popularity. We also test whether front loading the problem solving process is associated with development performance and we find that front loading is associated with increased code quality but decreased development productivity. Empirical tests are carried out with data from open source software projects. Findings potentially impact the design and management of online communities to help product development

    On Wasted Contributions: Understanding the Dynamics of Contributor-Abandoned Pull Requests

    Full text link
    Pull-based development has enabled numerous volunteers to contribute to open-source projects with fewer barriers. Nevertheless, a considerable amount of pull requests (PRs) with valid contributions are abandoned by their contributors, wasting the effort and time put in by both the contributors and maintainers. To better understand the underlying dynamics of contributor-abandoned PRs, we conduct a mixed-methods study using both quantitative and qualitative methods. We curate a dataset consisting of 265,325 PRs including 4,450 abandoned ones from ten popular and mature GitHub projects and measure 16 features characterizing PRs, contributors, review processes, and projects. Using statistical and machine learning techniques, we find that complex PRs, novice contributors, and lengthy reviews have a higher probability of abandonment and the rate of PR abandonment fluctuates alongside the projects' maturity or workload. To identify why contributors abandon their PRs, we also manually examine a random sample of 354 abandoned PRs. We observe that the most frequent abandonment reasons are related to the obstacles faced by contributors, followed by the hurdles imposed by maintainers during the review process. Finally, we survey the top core maintainers of the studied projects to understand their perspectives on dealing with PR abandonment and on our findings.Comment: Manuscript accepted for publication in ACM Transactions on Software Engineering and Methodology (TOSEM

    Pull request latency explained:an empirical overview

    Get PDF
    Pull request latency evaluation is an essential application of effort evaluation in the pull-based development scenario. It can help the reviewers sort the pull request queue, remind developers about the review processing time, speed up the review process and accelerate software development. There is a lack of work that systematically organizes the factors that affect pull request latency. Also, there is no related work discussing the differences and variations in characteristics in different scenarios and contexts. In this paper, we collected relevant factors through a literature review approach. Then we assessed their relative importance in five scenarios and six different contexts using the mixed-effects linear regression model. The most important factors differ in different scenarios. The length of the description is most important when pull requests are submitted. The existence of comments is most important when closing pull requests, using CI tools, and when the contributor and the integrator are different. When there exist comments, the latency of the first comment is the most important. Meanwhile, the influence of factors may change in different contexts. For example, the number of commits in a pull request has a more significant impact on pull request latency when closing than submitting due to changes in contributions brought about by the review process. Both human and bot comments are positively correlated with pull request latency. In contrast, the bot’s first comments are more strongly correlated with latency, but the number of comments is less correlated. Future research and tool implementation needs to consider the impact of different contexts. Researchers can conduct related studies based on our publicly available datasets and replication scripts
    • …
    corecore