
OSS Architecture for Mixed-Criticality Systems

A Dual View from a Software and System Engineering Perspective

Ralf Stefan Ramsauer, M. Sc.

OSS Architecture for Mixed-Criticality Systems
A Dual View from a Software and System Engineering Perspective

Von der Fakultät für Elektrotechnik und Informatik

der GottfriedWilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades

DOKTOR-INGENIEUR

(abgekürzt: Dr.-Ing.)

genehmigte Dissertation

von Herrn

Ralf Stefan Ramsauer, M. Sc.

2021

Referent: Prof. Dr.-Ing. habil. Daniel Lohmann
Korreferent: Prof. Dr. rer. nat. Wolfgang Mauerer

Tag der Promotion: 21. Dezember 2021

Ralf Stefan Ramsauer, M. Sc.
OSS Architecture for Mixed-Criticality Systems

Dissertation, 8. Oktober 2021

iv

Abstract
Computer-based automation in industrial appliances led to a growing number of logically depen-
dent, but physically separated embedded control units per appliance. Many of those components
are safety-critical systems, and require adherence to safety standards, which is inconsonant with
the relentless demand for features in those appliances. Features lead to a growing amount of
control units per appliance, and to a increasing complexity of the overall software stack, being
unfavourable for safety certifications. Modern CPUs provide means to revise traditional separa-
tion of concerns design primitives: the consolidation of systems, which yields new engineering
challenges that concern the entire software and system stack.

Multi-core CPUs favour economic consolidation of formerly separated systems with one efficient
single hardware unit. Nonetheless, the system architecture must provide means to guarantee
the freedom from interference between domains of different criticality. System consolidation
demands for architectural and engineering strategies to fulfil requirements (e.g., real-time or
certifiability criteria) in safety-critical environments.

In parallel, there is an ongoing trend to substitute ordinary proprietary base platform software
components by mature OSS variants for economic and engineering reasons. There are funda-
mental differences of processual properties in development processes of OSS and proprietary
software. OSS in safety-critical systems requires development process assessment techniques
to build an evidence-based fundament for certification efforts that is based upon empirical
software engineering methods.

In this thesis, I will approach from both sides: the software and system engineering perspective.
In the first part of this thesis, I focus on the assessment of OSS components: I develop software
engineering techniques that allow to quantify characteristics of distributed OSS development
processes. I show that ex-post analyses of software development processes can be used to serve
as a foundation for certification efforts, as it is required for safety-critical systems.

In the second part of this thesis, I present a system architecture based on OSS components that
allows for consolidation of mixed-criticality systems on a single platform. Therefore, I exploit
virtualisation extensions of modern CPUs to strictly isolate domains of different criticality. The
proposed architecture shall eradicate any remaining hypervisor activity in order to preserve real-
time capabilities of the hardware by design, while guaranteeing strict isolation across domains.

Keywords—real-time operating system, mixed-criticality, static hardware partitioning, develop-
ment processes, development process reconstruction, quantitative software engineering

v

Kurzfassung
Computergestützte Automatisierung industrieller Systeme führt zu einer wachsenden Anzahl
an logisch abhängigen, aber physisch voneinander getrennten Steuergeräten pro System. Viele
der Einzelgeräte sind sicherheitskritische Systeme, welche die Einhaltung von Sicherheitsstan-
dards erfordern, was durch die unermüdliche Nachfrage an Funktionalitäten erschwert wird.
Diese führt zu einer wachsenden Gesamtzahl an Steuergeräten, einhergehend mit wachsen-
der Komplexität des gesamten Softwarekorpus, wodurch Zertifizierungsvorhaben erschwert
werden. Moderne Prozessoren stellen Mittel zur Verfügung, welche es ermöglichen, das traditio-
nelle Trennung von Belangen Designprinzip zu erneuern: die Systemkonsolidierung. Sie stellt
neue ingenieurstechnische Herausforderungen, die den gesamten Software und Systemstapel
betreffen.

Mehrkernprozessoren begünstigen die ökonomische und effiziente Konsolidierung vormals ge-
trennter Systemen zu einer effizientenHardwareeinheit. Geeignete Systemarchitekturenmüssen
jedoch die Rückwirkungsfreiheit zwischen Domänen unterschiedlicher Kritikalität sicherstellen.
Die Konsolidierung erfordert architektonische, als auch ingenieurstechnische Strategien um
die Anforderungen (etwa Echtzeit- oder Zertifizierbarkeitskriterien) in sicherheitskritischen
Umgebungen erfüllen zu können.

Zunehmend werden herkömmliche proprietär entwickelte Basisplattformkomponenten aus
ökonomischen und technischen Gründen vermehrt durch ausgereifte open source software
(OSS) Alternativen ersetzt. Jedoch hindern fundamentale Unterschiede bei prozessualen Eigen-
schaften des Entwicklungsprozesses bei OSS den Einsatz in sicherheitskritischen Systemen.
Dieser erfordert Techniken, welche es erlauben die Entwicklungsprozesse zu bewerten um ein
evidenzbasiertes Fundament für Zertifizierungsvorhaben basierend auf empirischen Methoden
des Software Engineerings zur Verfügung zu stellen.

In dieser Arbeit nähere ich mich von beiden Seiten: der Softwaretechnik, und der Systemar-
chitektur. Im ersten Teil befasse ich mich mit der Beurteilung von OSS Komponenten: Ich
entwickle Softwareanalysetechniken, welche es ermöglichen, prozessuale Charakteristika von
verteilten OSS Entwicklungsvorhaben zu quantifizieren. Ich zeige, dass rückschauende Analysen
des Entwicklungsprozess als Grundlage für Softwarezertifizierungsvorhaben genutzt werden
können.

Im zweiten Teil dieser Arbeit widme ich mich der Systemarchitektur. Ich stelle eine OSS-basierte
Systemarchitektur vor, welche die Konsolidierung von Systemen gemischter Kritikalität auf
einer alleinstehenden Plattform ermöglicht. Dazu nutze ich Virtualisierungserweiterungen
moderner Prozessoren aus, um die Hardware in strikt voneinander isolierten Rechendomänen
unterschiedlicher Kritikalität unterteilen zu können. Die vorgeschlagene Architektur soll jegli-
che Betriebsstörungen des Hypervisors beseitigen, um die Echtzeitfähigkeiten der Hardware
bauartbedingt aufrecht zu erhalten, während strikte Isolierung zwischen Domänen stets sicher
gestellt ist.

Schlüsselwörter—Echtzeitbetriebssysteme, mixed-criticality, statische Hardwarepartitionierung,
Entwicklungsprozesse, Rekonstruktion von Entwicklungsprozessen, quantitatives Software En-
gineering

vii

Danksagungen
Ich möchte meine Danksagung mit Personen außerhalb meines Arbeitsumfeldes begin-
nen. Ohne Euch wäre diese Arbeit schlicht nicht möglich gewesen wäre.

Allen voran danke ich meinen Eltern Hildegard und Manfred für ihre unermütliche
Unterstützung. Euch beiden gilt mein größter Dank und Respekt, und Euch möchte ich
diese Arbeit widmen.

Ein besonderer Dank gilt Dr. rer. nat. Annette Schnettelker. Vielen Dank für Deine stän-
dige Unterstützung und Motivation!

Weiterhin danke ich all meinen Freunden aus der Binary Kitchen, unserem Hackspace.
Es sind unzählige Abende mit ertragreichen fachlichen Diskussionen, welche mir stets
neue Inspiration gebracht haben. Unmöglich kann ich Euch alle aufzählen. In diesem
Sinne—Danke, dass ihr alle da seid!

Diese kooperative Arbeit entstand unter der wissenschaftlichen Betreuung von Prof. Dr.-
ing. habil.Daniel LohmannundProf. Dr. rer. nat.Wolfgang Mauerer. LieberDaniel, lieber
Wolfgang, ich danke Euch beiden für Eure exzellente Betreuung und der ausgezeichne-
ten wissenschaftlichen Führung! Es war und ist mir eine Freude mit Euch zusammen zu
arbeiten. Ich durfte Teil Eurer beiden Arbeitsgruppen sein. Daher danke ich allen Mit-
gliedern beider Gruppen für die vielen ergebnisreichen Diskussionen, einer exzellenten
Arbeitsatmosphäre, ausgezeichneter Betreuung und Rückhalt.

Teile dieser Arbeit entstanden im Rahmen einer Industriekooperation mit Siemens
Corporate Technology, München. Mein besonderer Dank gilt Jan Kiszka. Jan, Du hast
mir mit viel Geduld Systementwicklung mit System gelehrt. Nirgendwo sonst konnte ich
in einer solchen Tiefe die Kunst der anwendungsnahen Systementwicklung lernen!

Regensburg, Oktober 2021

ix

Contents

1. Introduction 1
1.1. Consolidation of Systems . 5
1.2. Safety-Critical Systems and Open Source 8

1.2.1. Requirements . 8
1.2.2. Related Approaches . 12

1.3. Research Context of this Thesis . 14
1.3.1. Safety-Critical Systems, OSS and Certification 14
1.3.2. Mixed-Criticality Systems, OSS and System Architecture 17

1.4. Structure . 20

I. Reconstruction and Analysis of Software Development Processes 23

2. Reconstruction 25
2.1. Overview . 26
2.2. Fundamentals . 29
2.3. Clustering Similar Patches . 34

2.3.1. Rating Similarity of Two Patches 35
2.3.2. Parameters . 38
2.3.3. Reduction of problem space and clustering patches 40
2.3.4. Working with Mailing List Data 41

2.4. Evaluation . 42
2.4.1. External Evaluation . 43
2.4.2. Example: Duration of patch integration 46
2.4.3. Comparison to Other Approaches 47

2.5. Discussion . 48
2.5.1. The Algorithm . 48
2.5.2. Plus-Minus-based approach . 49
2.5.3. Performance . 49

2.6. Threats to Validity . 50
2.6.1. Internal Validity . 50
2.6.2. External Validity . 50
2.6.3. Construct Validity . 51

xi

2.7. RelatedWork . 51
2.7.1. Reconstruction of Development Processes 51
2.7.2. Distinction from Code Clone Detection 52

2.8. Summary and Conclusion . 53

3. Analysis 55
3.1. Structure . 55
3.2. Linux Kernel Development Process . 57

3.2.1. Core Characteristics . 57
3.2.2. Organigram and Areas of Responsibility 59
3.2.3. Lifecycle Management . 60
3.2.4. Exceptional Vulnerability Handling 62
3.2.5. Formalisation . 62

3.3. Extraction of Development Characteristics 64
3.3.1. Ignored Patches . 65
3.3.2. Conform Integration of Patches 73

3.4. Violation of Development Processes . 77
3.4.1. Secret Integration Channels . 78
3.4.2. Analysis . 79
3.4.3. RelatedWork . 85
3.4.4. Acknowledgements . 86

3.5. Discussion . 87
3.5.1. Validity . 87
3.5.2. Consequences . 90

3.6. Summary . 92

End of Part I

II. System Consolidation of Safety- andMixed-Critical Systems 97

4. Ideal Hardware Partitioning 99
4.1. Requirements on Ideal Hardware Partitioning 103

4.1.1. Efficiency of VMMs . 104
4.1.2. Architectural System Limitations 105
4.1.3. Device Specific Requirements 106
4.1.4. Platform Specific Requirements 108

4.2. The Jailhouse Hypervisor: Philosophy and Architecture 111
4.2.1. Overview . 111
4.2.2. Hardware and Software Support 117

xii

4.3. Cross-domain Protection Against Speculative Execution Exploits 117
4.3.1. Attacks and Mitigations . 119
4.3.2. Jailhouse and Speculative Execution Attacks 121

5. Evaluation and Discussion 125
5.1. Hypervisor Activity . 125

5.1.1. Common Hypervisor Activity . 125
5.1.2. Hypervisor Activity on x86 Platforms 126
5.1.3. Hypervisor Activity on ARM Platforms 128

5.2. Evaluation . 129
5.2.1. Hypervisor Overhead . 130
5.2.2. ARM: The Cost of Interrupt Reinjection 132
5.2.3. x86: The Cost of the Moderation of accesses to MSR 133
5.2.4. The Cost of Spectre Mitigations 137

5.3. Discussion . 145
5.3.1. The Jailhouse Approach . 145
5.3.2. Hardware Limitations . 146
5.3.3. Speculative Execution and Static Hardware Partitioning 147

5.4. Smoke Test . 148
5.5. Summary . 150

End of Part II

6. Summary, Conclusions and Further Ideas 155
6.1. Summary of the Thesis and Conclusion 155

6.1.1. Software Engineering . 155
6.1.2. System Engineering . 156

6.2. Further Ideas . 157

A. Appendix 159
A.1. Quantification of Mainlining Efforts . 159

A.1.1. Approach . 160
A.1.2. Discussion . 162
A.1.3. Conclusion . 164

Lists 165
Acronyms . 165
References . 171
List of Figures . 187
List of Tables . 188

xiii

List of Listings . 188
List of Algorithms . 188
Lebenslauf . 189

xiv

Introduction 1
„Our life, work, and society have become highly

dependent on software—in fact, we live today in a
software world!

— Frank J. Furrer
Future-Proof Software Systems [Fur19]

The broad availability of microprocessors started the digital revolution in the beginning
of the 1970s that, since then, fundamentally changed almost all areas of life. Their
flexibility allows to dynamically customise and adapt the same enabling technological
building block to a widespread range of applications. Machine-readable transformations
of algorithms—»Software«—is the basis of their flexibility: Software allows for using
general-purpose components for special-purpose appliances.

Software-based systems became omnipresent. Modern electronics that range from
highly-integrated consumer electronics, such as smartphones, to highly-specialised
industrial control systems, such as industrial assembly lines, can hardly be imagined
without being controlled by software [Vya13]. Yet, independent of the specific case of
application, themain objective remains the same: process improvement by optimisation
and automation. In industry, automation is the main driver of efficient manufacturing
processes. Microchips assist to automise formerly manual or semiautomatic fabrication
processes, in order to improve the efficiency of process sequences.

Besides manufacturing industry, microchips are increasingly used in means of trans-
portation, such as in the automotive or avionic industry, and for a wide range of medical
devices, for example dosing pumps or pacemakers. Those areas of application are ex-
amples where, in contrast to consumer electronics, software failures can have direct
and severe consequences on the integrity of human life [Kni02].

In such safety-critical environments, human life depend on an accurate, deterministic,
precise and correct operation of the system in any situation [Kni02]. This prerequisite
had already existed before the mass usage of microchips and software. However, the
use of microchips and software in such systems make both part of the safety-critical
aspects of the appliance.

1

Consider the evolution of brake systems in cars as an example. Automotive industry
is one industrial sector that was and still is massively influenced by microprocessor-
based technologies. Automotive brake systems are one partial aspect that illustrate the
technological evolution of a system that was strongly influenced by the technological
advancement of microchips and software.

Since their invention, the goal of any brake system is to cause negative acceleration to
moving objects. One traditional braking mechanism is based on hydraulic components:
Hydraulic pressure is generated by applying force to a brake pedal. The pressure is
forwarded to cylinders that shift pistons towards brake pads that, in turn, generate
friction with brake disks. Brake disks are connected to the rotating wheels; eventually,
the brake system converts kinetic energy to thermal energy in order to decelerate the
car.

Microchips and software offer the possibility to refine the goal of braking the car: they
enable to brake the car in an efficient and optimal way. Therefore, physical models are
implemented as software algorithms that receive fine-granular sensor values as input.
A software-based real-time control system, which is the failure-intolerant deterministic
mind of the hardware, determines control parameters for actuators of the system (e.g.,
the brakes) within a deadline that must never be exceeded: if the brake force that must
be applied to a wheel is determined too late, the car may loose friction.

Such software-based control loops enrich the entire appliance by additional safety
features, like the anti-lock braking system (ABS) that detects and eliminates wheels
from locking up, or the electronic stability control (ESC) that stabilises the traction of
cars by targeted brake control of specific wheels. Functional feature units are typically
controlled by their own dedicated software-controlled electronic control unit (ECU):
a hardware module that contains communication interfaces to sensors and actuators,
controlled by a software-driven microchip.

Yet, brake systems are only one functional segment of a car where computer-controlled
systems enable the enhancement and implementation of safety-critical assistance sys-
tems. The brake system is only one representative member of an amalgamation of
embedded systems of different criticality that, in total, form a superior appliance. The crit-
icality of elements or functions of a system is an ordinal number that is determined by
a hazard and risk analysis (for automotive, Ref. [ISO26262] Part 9: Automotive Safety In-
tegrity Level (ASIL)-oriented and safety-oriented analyses). Depending on the particular
assessment metrics, the result of hazard and risk analysis can, for example, classify the
engine control module (ECM) with the same criticality as the airbag control unit (ACU).
Still, both have a higher criticality than the rear view camera system, which in turn has
higher criticality than entertainment systems. Severity, exposure and controllability

2 Chapter 1 Introduction

are the base criteria for the classification: A failure of the entertainment system (e.g.,
miss of an alert due to failure of loudspeakers) is bearable, while a failure of the ECM
(e.g., unwanted acceleration) or the ACU (e.g., inadvertent deploy) can lead to the loss of
human life.

However, subsystems depend on each other, despite differences in criticality. Close
interaction and communication with each other is a precondition to fulfil functional
requirements: For example, the entertainment system with low criticality shall adjust
the loudspeaker volume level with respect to the vehicle’s speed, but it must immediately
silence the radio in case of acoustic warning signals that are indicated by one of the
safety-critical ECUs. At the same time, the acoustic report of a critical event of the
collission avoidance system (CAS) has a higher priority than the acoustic report of, for
instance, a coincident detection of a broken brake light. Flow and prioritisation of
information between subsystems requires careful definition and consideration.

Those non-trivial engineering challenges are complicated by modern cars that contain
up to 100 different ECUs [HH08] that span 100 million lines of code (LOC) [Wen+15].
Nonetheless, the guarantee of safe operation of the appliance requires a failure-tolerant,
deterministic, reliable and robust functional interaction of all components in any sit-
uation. Such aforementioned »non-functional requirements (NFRs)« [Rom85].1 They
specify project global requirements on how software implements a specific requirement
rather that what exactly is implemented [TD90]. NFRs can have a direct influence on
the system’s hardware- and software architecture [Chu+12].

Other NFRs demand for the certification or qualification of the systems: safety-critical
components must conform with international standards. In the automotive industry,
for example, systems shall conform with the de-facto standard [ISO26262] »Road vehi-
cles - Functional safety«. Parts 4, 5, and 6 of the international standard demand for
well-defined development processes for the development of the system for both, the
hardware, and the software level. A safety assessment requires arguing that the underly-
ing development processes are effective and fulfil particular safety requirements, and
that the development is traceable: it must adhere to those associated processes.

Certified development processes need to implement high standards regarding trace-
ability and auditability of all development decisions, including hardware and software
architecture. Without the loss of generality, this is not limited to the automotive industry:
in alignment with the peculiarities of the specific application environment, the indus-
trial norm [IEC61508] is, among others, a superior norm to application-specific norms
like [IEC60601] and [IEC62304] for medical electrical equipment, [ARINC653] and [DO-
178B] for avionics, or [IEC60880] for nuclear power stations. The interpretation of
1NFRs are also referred to as quality attributes [BBL76] or soft goals [Chu+12].

3

directives of those norms on development processes can reflect on decisions on the
system’s architecture. However, they provide a certain scope of action.

Hence, system engineering approaches, hardware design decisions, and software archi-
tecture, as well as engineering principles became inseparable disciplines as hardware
and software components influence each other:

Hardware and software must be designed together to make sure that the
implementation not only functions properly but also meets performance,
cost, and reliability goals. [Wol94]

Hardware needs to be chosen to fulfil the requirements of the system’s operational
scenario (e.g., environmental or electrotechnical aspects). Simultaneously, software
and hardware put mutual demands. Hardware needs to be able to serve certain system
properties, for example providing a physical Controller Area Network (CAN) bus, or to
provide enough computational performance for maintaining a certain cycle time or
real-time properties. At the same time, the system’s software architecture needs to be
designed with due regard to those exact properties of the underlying hardware.

Decisions on system architecture are closely tied to the capabilities or features of the
underlying processor architecture. A capability can for example be the existence of
hardware memory protection mechanisms, as they are implemented by memory man-
agement units (MMUs) or memory protection units (MPUs). Such capabilities can be
used to accomplish non-functional requirements (e.g., robustness), by exploiting guar-
antees that are given by (certified) low-level hardware mechanisms in software.

In many traditionally-engineered appliances, a functional task is assigned to a subsystem
of the appliance that corresponds with its self-contained, dedicated embedded system
(i.e., a ECU). These decentralised units construction principle allows for high modularity
(i.e., high variety of product lines) of an appliance.

Traditionally-engineered appliances—underlines the matureness of a tried and tested
engineering strategy, but also emphasises the existence of attempts to renovate ap-
proaches [Bro06; BD13]. In this thesis, I investigate challenges of two, at first glance
independent, ongoing tendencies of paradigm shifts in engineering approaches: the
increasing request to use OSS components in safety-critical systems, and the consolida-
tion of systems of mixed-criticality to one centralised appliance, and the close relation
of both topics.

4 Chapter 1 Introduction

1.1 Consolidation of Systems

Manufacturers of safety-critical and uncritical products still tend to split components
with different levels of criticality to separate hardware units. In such traditional mixed-
criticality (MC) environments, single logical control tasks are strongly bound to dedicated
physical control units. Appliances that implement this traditional architectural approach
range from automotive industry, where it is not uncommon that a single car contains
dozens to a hundred of separate control units [HH08], to industry automation, where
Programmable Logic Controllers (PLCs) and Human Machine Interfaces (HMIs) are
physically separated: critical logical tasks compute on different physical computing
platform than the uncritical HMIs. Historically, the separation of components stems
from a time, where components were autonomous subsystems. In [Bro06], Manfred
Broy summarises:

The first software-based solutions were very local, isolated and unrelated.
The hardware/software systems were growing bottom up. This determined
the basic architecture in cars with their dedicated controllers (ECUs) for the
different tasks as well as dedicated sensors and actuators. Over the time to
optimise wiring, bus systems (see [CAN91]) were deployed into the cars by
which the ECUs became connected with the sensors, and actuators.

Additionally, industrial real-time control systems are often built by extending general
purpose commercial off-the-shelf (COTS) hardware components to reduce develop-
ment effort in time and cost by maximising the re-use of existing solutions. The ap-
proach is commonly taken in many industrial domains, for instance automation and
control systems [KG19], civil infrastructure projects [Fou19], medical appliances [Kis09]
or robotics [Qui+09].

The re-use and extension of components is beneficial if flexibility in system capabilities
is more important than potential reductions in cost that can be achieved by mass-
producing tailored devices that precisely satisfy requirements, but usually never exceed
them. Such scenarios often appear, for instance, in the automotive industry, but are
rarely applicable to low-volume domains like medical appliances, industrial control, or
even home automation.

Traditional architectural approaches are being revised since multi-core (MC) CPUs be-
came broadly available. Figure 1.1 shows the evolution of CPUs during the last decades:
Simultaneously with the flattening of the increase of the per-core frequency since≈2005,
the number of cores per CPU increases. Today, powerful multi-core CPUs are om-
nipresent, and de-facto standard components in COTS hardware, in enterprise hardware,
in the high-performance computing (HPC) domain and in server markets. Additionally,

1.1 Consolidation of Systems 5

Transistors
(Thousands)

MIPS
R2K

Intel
P4

1975 1980 1985 1990 1995 2000 2005 2010 2015

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

DEC
Alpha
21264

Typical
Power (W)

Frequency
(MHz)

SPECint
Performance

~9%/year

~15%/year

Number
of Cores

Intel 48-Core Prototype

?

AMD 4-Core Opteron

Figure 1.1.: Evolution of processors since 1975. Since≈2005, the number of cores per central processing
unit (CPU) steadily increases. Simultaneously, the increase of processor frequency declined.
Taken from [Bat20].

MCCPUs gain in importance in embeddedmarkets [Moy13]. Yet, component-based hard-
ware architectures forego the capabilities and the resources of multi-core CPUs: Their
resources allow for running tasks of previously dedicated hardware units on one single
hardware unit [Moy13]. The consolidation of traditional systems to single hardware
units is still an ongoing architectural trend [Bro06]. The reasons for this architectural
evolution are:

1. Reduction of hardware costs. The consolidation of components removes dupli-
cated or redundant hardware components, which eventually lowers expenses for
hardware. Every formerly logically separated component required, for example,
its own redundant power supply. Further on, physically distanced components
need communication links. Robust bus systems are required for reliable data
transmission. However, every component shares, for example, the same dupli-
cated hardware driver stages for accessing shared communication buses. These
and similar duplicated components can be efficiently replaced by on-chip software
communication channels [Moy13] in consolidated systems.

6 Chapter 1 Introduction

2. Simplification of system architectures. The abovementioned components are su-
perfluous in a consolidated architecture, as communication between components
happens within the same computing unit: Besides complex bus systems and their
hardware components, higher layer protocols can be replaced by lightweight on-
chip communication primitives. As a side effect, architectural simplifications can
also be beneficial for software certification–that is expensive formal attestation
efforts, as typically required for software for safety-critical systems [KZ09].

3. Improvement ofmaintainability. Industrial systems need to bemaintained during
their whole life cycle. Product life cycles range from decades (e.g., in the automo-
tive industry) up to centuries (e.g., in avionics or for civil infrastructure). As the
software is tightly coupled to the hardware architecture, long-termmaintenance
is simplified by the reduction of the variability of different hardware components
of an appliance.

Formerly distributed hardware units require coordinated software update strate-
gies in order to prevent software incompatibilities between different units. In
consolidated architectures, there is only one single instance that requires mainte-
nance and updates. This simplifies large-scale roll-outs of software updates in the
broad field.

4. Reduction of development costs. “50-70% of the development costs of the soft-
ware/hardware systems are software costs” [Bro06]. The consolidation of systems
can save software development costs, as the overall complexity of the systems
is significantly reduced, and concentrated to one single unit. Furthermore, con-
solidation eases testing and simulation of systems. The simulation of formerly
complex interwoven distributed hardware units is substituted by the simulation of
one single platform, which contains less software that is object to testing.

System consolidation is a straight forward and well-understood engineering challenge
with various architectural implementation possibilities in case of the consolidation of un-
critical systems (e.g., refer to the techniques that are widely applied in cloud computing).
However, it becomes a non-trivial challenge if one or more safety-critical systems (SCSs)
are involved: despite the considerable advantages of system consolidation, there remain
strict requirements on SCSs in general, and on mixed-criticality systems in particular
that inevitably enforce decent and well-considered design of the system’s architecture.
I will elaborate those requirements in the next section.

1.1 Consolidation of Systems 7

1.2 Safety-Critical Systems and Open Source

According to [Kni02], a system is a SCS, if a failure of the system leads to consequences
that are considered unacceptable. Unacceptable consequences can be the loss of human
life, property damage, or environmental damage [Kni02]. Industries that are concerned
with safety-critical systems are, for example, the automotive industry, aircraft industry,
energy industry (e.g., power plants), and industrial automation (e.g., robot or process
control).

As mentioned before, depending on the field of application and the application en-
vironment, different standards and norms put functional as well as non functional
requirements on those systems. However, there are common basic requirements that
are put on any SCS.

1.2.1 Requirements

The existence of unacceptable consequences implies that there must exist measures
to either mitigate or prevent them. The archetype of SCS are airbags in cars. In sum,
in case of unpreventable accidents, the unacceptable consequence is severe injuries
of occupants, or, even worse, the loss of human life. The countermeasure (resp., the
mitigation) is the ignition of an explosive charge to inflate the airbag.

Req. 1 Real-Time and OSS. The precise ignition of the explosive charge is the software-
controlled key element for the success of the safety measure; the airbag must
be inflated at the right time—it must not be inflated too early or too late. Precise
ignition implies both, on time ignition in critical situations, and no ignition in all
other situations—misdetermination leads to unacceptable consequences. Hence,
airbags are safety-critical systems, and typically have the highest classification of
initial hazard (i.e., ASIL D [ISO26262; Alj+09]).

The example illustrates the necessity of the time-critical evaluation of measure-
ment data, and the on-time execution of corresponding countermeasures that
must be guaranteed under all circumstances: A countermeasure that is not exe-
cuted, executed too early or executed too late leads to severe consequences. This
forms one fundamental requirement that can be found in any SCS: the industrial
robot must stop movement in case of approaching humans—on time, the control
systems of the autopilot of an aircraft must take the right decisions—on time, the
infusion pumpmust administer the drug according to a defined gradient—on time.

8 Chapter 1 Introduction

From the non-functional perspective, every SCS is a time-critical system. In the lin-
gua of computer science, time-critical systems are hard real-time systems [Kop11].
I want to emphasise that any safety-critical system is a hard real-time system: In-
terventionsmust be executed within a strictly predefined time-window, and there
must not exist any outliers beyond that time-window. Software systems without
hard real-time requirements are not safety-critical.

Commonly, proprietary system software components are used to implement real-
time systems. Such special purpose real-time operating systems are, for example,
Nucleus RTOS, PikeOS [KW07], QNX or VxWorks. The downside of many of those
operating systems (OSs) is the lack of available features, especially when those
systems are being used in complex appliances that demand heavy-weight features.
Yet, the demand for features corresponds with the level of criticality: the info-
tainment system of a car obviously has lower criticality than the ACU, yet it must
provide a wider range of features, such as to support various audio/video codecs,
to support wireless interconnectivity, etc.

For such feature-rich applications, the OSS ecosystem provides a wide range of
diverse solutions that range from highly flexible and adaptable OSs to high-level
userspace libraries. Meanwhile, Linux is the de-facto universal standard OSS OS
component in various non-critical industrial appliances. It comes with an exten-
sive support for many hardware devices and implements numerous standardised
protocols while it remains highly customisable [Die+12] for specific use-cases:
Linux supports hardware configurations that range from supercomputers to deeply
embedded systems. Linux as base platform component in combination with other
components of the OSS ecosystem form the base platform components of various
systems.

By default, Linux is not a real-time operating system (RTOS). To serve real-time pay-
loads, there exist several approaches to extend the Linux kernel by real-time (RT)
capabilities: Real Time Application Interface (RTAI) [Man+00], Xenomai [Kis09],
Preempt-RT [PRT20], and RTLinux [Yod99]. Xenomai and Preempt-RT are the most
popular extensions [RMF19]. However, none of the aforementioned approaches
has yet been fully integrated in the Linux kernel, some of them will never be
integrated. Hence, maintenance and enhancements of those projects happens
in parallel to regular ongoing development activities of Linux, which leads to
enormous maintenance efforts [RLM16]. Nonetheless, Linux and the OSS ecosys-
tem remain attractive opportunities to be used in safety-critical environments.

1.2 Safety-Critical Systems and Open Source 9

The amount of industrial consortia that is hosted by the Linux Foundation (LF)2

underlines the strong interest on OSS in that area. Refer to whitepapers of differ-
ent stakeholders: The Civil Infrastructure Platform (CIP) [CIP17], the Automotive
Grade Linux (AGL) [AGL18] or Enabling Linux in Safety Applications (ELISA) [LF18].

However, real-time capabilities of the software system are not the unique criterion
to qualify a system for being used in safety-critical applications. Irrespectively of
the origin of the software, regulatory authorities demand for software qualification.
This is the second requirement on safety-critical systems.

Req. 2 Software Certification. Safety-critical systems typically require system certifi-
cation. As explained before, certifications shall ensure the correctness of the
behaviour of a system in any situation. Therefore, systems must fulfil several
NFRs, such as reliability, robustness, failure-tolerance, and others. An impor-
tant criterion to succeed certifications is to provide evidence that those NFRs are
fulfilled.

Formal verification methods can be used to qualify for certain certification cri-
teria [Jää+12]. While it is possible to prove the formal correctness of aspects of
systems [Kle+14], formal verification is a highly complex endeavour that is hard to
transfer to real-world systems that comprise tens of millions of lines of code. The
size of a software system is a limiting factor for any certification effort.

Safety standards and norms set great store on development processes, process
hierarchies and traceability of development as a whole, and its decisions. The
norms expect that strict adherence to preset processes shall implement high
software quality. As evidence, the adherence to the process must be verifiable.
The verification can be justified with quantifiable aspects of the development
process. Usually, non-functional safety aspects of a project are concomitant with
the development of a project. As this is one of the central aspects of this thesis, I
will later explain (Ref. Section 1.3.1) in detail why those requirements are in conflict
with the nature of OSS projects. While standards and norms recommend certain
developmentmodels (e.g., theV-Model in case of [IEC61508]), they generally do not
forbid to incorporate other models, if they are structured and managed [PMB18].
Nevertheless, a clear definition of the process is prerequisite and requires means
to measure the adherence of the process.

A carefully considered choice of software components for different levels of criti-
cality can beneficially contribute to the solution of this issue. However, especially

2The LF is a non-profit organisation that hosts different consortia of different groups of interest with the
goal to promote the growth of Linux.

10 Chapter 1 Introduction

in MC scenarios, where multiple systems of different criticality execute on the
same platform, system architecture must implement means to guarantee freedom
from interference of different executing domains.

Req. 3 Strict Isolation. Because of the increasing computational power of single systems,
formerly separated hardware/software components are increasingly consolidated
on single systems. Such mixed-criticality systems are a specialisation of SCSs.
In MC scenarios, multiple applications or systems that may have different safety
integrity levels (SILs) run on the same computational unit (i.e., platform). Different
computing domains must be strictly isolated to ensure the dependability of the
appliance. Additionally, the hardware and the system software stack must provide
means to guarantee the freedom from interference, that is, the “absence of cas-
cading failures between two or more elements that could lead to the violation of a
safety requirement” [ISO26262]. Having the software certification requirement in
mind, strict isolation of computing domains, simplicity and minimality of critical
aspects of the system architecture and the minimisation of the amount of critical
code are encouraging factors for safety certification.

Inmany cases, the individual software components that are object of consolidation
stem from formerly dedicated hardware units and, hence, already received certifi-
cation as they already underwent the certification process. Thus, it is important to
run legacy payloads in those isolated domains without major modification.

With respect to those requirements, the context of this thesis is as follows:

1. I consider consolidated mixed-criticality systems, where Linux serves as feature-
rich OS for aspects of the system with less criticality.

2. Domains with high criticality shall execute in dedicated and strictly isolated do-
mains. Those domains shall run (potentially pre-certified and preexisting) RT
payloads.

3. The underlying system architecture must maintain real-time capabilities, as do-
mains may run safety-critical payloads.

4. The system architecture must suite the certification requirements of the whole
system.

1.2 Safety-Critical Systems and Open Source 11

1.2.2 Related Approaches

Since 2014 [OSADL14], the SIL2LinuxMP project is an ongoing industrial research project
that aims to address and fulfil the requirements of Section 1.2.1. Authors investigate
certification possibilities of safety-related products that use an OSS software stack that
builds upon Linux as OS. The goal of the project is to provide a certification template
that can be reused for a product-specific implementation of their proposed architecture
up to a safety level of SIL 2 (Ref. [IEC61508]).

With respect to Req. 3, the certification template shall provide qualification arguments
for pre-existing software components that include, besides Linux as the foundation of their
architecture, base platform components, such as the standard C library (i.e., glibc) and
userland tools (e.g., BusyBox) [PMB18]. By using isolationmechanisms that are provided
by Linux, SIL2LinuxMP shall allow to run applications of mixed-criticality, that is, to run
isolated SIL 0 containers in parallel to SIL 2 applications (cf. Fig. 1.2).

Figure 1.2.: SIL2LinuxMP architecture proposal. Proposed in and taken from [PMB18].

To address Req. 1, a real-time capable Preempt-RT-patched Linux is at the core of their
platform [Gui14]. They execute on single orMC platform that uses COTS components. To

12 Chapter 1 Introduction

ease Req. 2, they minimise the amount of code, the Linux kernel configuration must be
tailored to only fulfil functional and non-functional requirements that relate to the spe-
cific product. While their architecture is not bound to a specific implementation, authors
of SIL2LinuxMP suggest one possible implementation. In their proposal, SIL2LinuxMP
uses PALLOC [Yun+14], a DRAM bank-aware memory allocator for performance iso-
lation on MC platforms [Gui14]. Besides Preempt-RT, PALLOC is the second external
extension for Linux that is not officially supported by the Linux kernel community,
which complicates the maintenance of the system (Ref. Appendix A.1). It allows for
dynamic and flexible partitioning of DRAMbanks of commonCOTS systems, and assigns
partitions to cores of the system. “The private banking strategy reduces performance
variations (up to 4.4x), and offers better real-time performance on COTS multi-core
platforms” [Yun+14].

Safety-critical and uncritical applications are pinned to and only execute on dedicated
CPUs. To achieve isolation between different domains, SIL2LinuxMP leverages Linux
Namespaces [BN06] and Control Groups [Heo+15]. For domain management, they pro-
pose to handle cgroups manually (i.e., without comprehensive standard tooling), and to
implement a minimal, tailored launcher [Gui14] that better suits for certification. The
software utility and tool suite BusyBox shall serve as a minimalist runtime environment,
backed by the heavyweight glibc as standard C library for safety-critical parts of the
system. The rationale behind this choice is to “minimise safety-related runtime over-
head” [Gui14]. To avoid illicit system calls during operation, they propose to use seccomp.
Seccomp whitelists system calls that are permitted in safety-critical domains. System
calls that are not used shall not be allowed to be executed in the operative phase.

Uncritical SIL 0 domains shall use standard container (i.e., sandboxing) mechanisms
that are provided by Linux. SIL2LinuxMP uses a separate domain for systemmonitoring
and admission (cf. Fig. 1.2).

To further address Req. 2, authors argue that statistical modelling of development pro-
cess characteristics, for example bug rates of a system, or quantification of development
process activities, supports certification efforts. They further argue that “the Linux ker-
nel developers define a quite rigorous development process [LKP18] which, in principle,
can address most of the requirements for a structured and managed process set forth
in [IEC61508] Ed. 2 part 3.” [PMB18]

Authors of SIL2LinuxMP identify the lack of certifiable MC CPUs as one of the most
striking issues for their certification efforts, while they see the certification of a software
stack that contains several millions of lines of code even in the tiniest configuration,
surprisingly, as a manageable issue. However, the Linux kernel of SIL2LinuxMP incor-
porates two invasive out-of-tree developments, which may result in major maintenance

1.2 Safety-Critical Systems and Open Source 13

issues: In Appendix A.1, I will present development characteristics of the Preempt-RT
and quantify maintenance efforts. However, the PALLOC extensions did, at the time of
writing, not receive any updates since three years. The latest supported kernel Version
is v4.4 from January 2016.

As SIL2LinuxMP purely relies on Linux-based isolation mechanisms, all computing
domains share the same kernel: a critical system failure in any computing domain of
the system leads to an overall system failure, which endangers Req. 3. As the shared
monolithic Linux kernel operates across all levels of criticality, isolation and freedom
from interference requirements can not be fulfilled under all circumstances.

1.3 Research Context of this Thesis

In this section, I define the contextual frame of this thesis, and derive my research
questions.

1.3.1 Safety-Critical Systems, OSS and Certification

As an intellectual property of individuals or legal entities, many industrial software
components are based on the results of different, highly specialised proprietary–closed
source–development undertakings. Over the last decades, general purpose OSS com-
ponents gained great interest for being used in industrial special purpose systems, as
they are highly adaptable, customisable and tailorable, which makes them suitable for
special purpose applications. OSS components are a high-quality economic alternative
to former proprietary components in a wide range of applications.

The fundamental difference of OSS and closed source software is the licensing model.
In proprietary software development undertakings, a customer achieves their objectives
(for example, the implementation of new features, or the adherence to certain devel-
opment processes) by commercial transactions. In OSS projects, there is no necessity
of such customers in the classic sense. Decision makers and customers can further be
disjoint parties.

While, in the first place, such dynamics in OSS projects may appear incompatible with
economic principles of the industry, there is an increasing interest for the use ofOSS com-
ponents for uncritical as well as for safety-critical purposes. Especially base platform
components that implement indistinguishable characteristics, like firmware, bootload-
ers, or operating systems are increasingly being used in industrial appliances.

14 Chapter 1 Introduction

However, the increasing usage of OSS components even in critical domains demands for
certification strategies. Their comprehensive support of hardware, their wide range of
application, and their universality are the drivers for efforts to utilise OSS components
in safety-critical environments–environments, where software components formerly
mainly stem from proprietary products, which have controlled development environ-
ments with respect to non-functional processual aspects.

As explained earlier in Section 1.2, regulatory norms put such requirements on the
development process of software that is being used in safety-critical applications. They
require, for example, the strict adherence to a formally defined development process
as well as implementing mechanisms to verify the adherence. Typically, in safety-
relevant proprietary development processes, the adherence to development processes
is measured by traceability means that are implemented in the process. Any decision
that affects the code needs to be traceable.

However, in OSS projects, “the process is defined and enforced by social contract, but
not by legal working contracts” [Bul17a]. Linux, for example, is an OSS general purpose
operating system (GPOS) that has a wide area of application–safety-critical applications
represent only one small field of application. The existing development process that
evolves within the community optimally fits for this wide range of applications. Conse-
quently, regulations that are given by safety norms are not relevant for the vast majority
of stakeholders of the project. The conformance with safety regulations would lead to
enormous extra effort and expense during the development for the whole community,
while only a small amount of stakeholders would benefit from them. Hence, communi-
ties are understandably not willing to replace their existing, proven in use social contracts
by external requirements.

As the development process of OSS projects can not be adjusted ad libitum, it raises the
question if (a) existing development processes already fulfil safety-critical requirements
to some degree, and (b) if the real ongoing development actually is in alignment with
its own development process. While the first question (a) needs to be addressed by
safety experts and regulatory authorities, the second question (b) can be split up into
fine-granular research questions that can be answered by ex-post analyses of the devel-
opment process of OSS projects by using quantitative software engineering methods.
The key enabling factor lies in the nature of OSS projects: their high public transparency.
Virtually all development artefacts, such as code changes, developer discussions, code
review or bug trackers are available to the public. However, to answer questions on the
development process requires a traceable representation of a software project, which is
not given out of the box. Due to the used tools (e.g., mailing lists), development artefacts
are represented in an unorganised fashion, when being compared with the development

1.3 Research Context of this Thesis 15

result, traceability against the software repository. Even in themature Linux community,
traceability of software artefacts is a frequent topic for discussions,3 and not given in
most cases. In the context of using OSS components in SCS, this leads to the research
questions that concern safety certification efforts:

Research Question 1: Can complex OSS development processes be reconstructed in ex-post
analyses?

Research Question 2: What are reasonable metrics to quantify the adherence to or violations
of OSS development processes?

These research questions define both, the contributions as well as the contentual bound-
aries of this thesis:

Contributions I show that it is possible to reconstruct complex OSS development pro-
cesses by exploiting their key characteristic: transparency. In Part I, I present a highly
accurate methodology to reconstruct software development processes of projects that
incorporate noisy mailing lists (MLs) as their main communication platform. Especially
low-level system software, which I target in this thesis, heavily make use of MLs. I
present the Patch Stack Analysis (PaStA), an industry-grade, fully published and exten-
sible framework that allows for further in-depth analyses and scales with the world’s
largest software development projects.

On an empirical basis, I demonstrate that the approach can be used to extract specific
indicators that support certification efforts of OSS components for the use in safety-
critical systems. To underline the capabilities of the approach, I define quintessential
indicators that can be used to qualify development processes of OSS projects in safety-
critical contexts.

Boundaries The measurements are used to demonstrate the practicability of the pre-
sented approach. While they give us answers to real-world issues, they do not implicitly
enable a safety assessment: The quantification of effects does not provide qualitative
judgements on processual reasonableness, yet they form one important component in a
superior certification endeavour. Particular questions need to be defined by safety ex-
perts, and can be answered by leveraging the methodical framework. The incorporation
of such answers to safety certification efforts remains future work.

3Refer to a discussion on a Linux kernel mailing list: https://lists.linuxfoundation.org/pipermail/
ksummit-discuss/2019-August/006739.html

16 Chapter 1 Introduction

https://lists.linuxfoundation.org/pipermail/ksummit-discuss/2019-August/006739.html
https://lists.linuxfoundation.org/pipermail/ksummit-discuss/2019-August/006739.html

Software engineering and the analysis of development processes is an essential require-
ment for safety certifications, yet meta-discussions on incidents in the development
chain will not implement fundamental functional properties of the system architecture of
SCSs. Functional properties, for example real-time capabilities (cf. Req. 1), are enabled
by the system’s architecture which is the result of the system engineering process.

The challenge is to design a system architecture, which is beneficial to safety certifica-
tions: with respect to non-functional requirements, a sound system architecture can
significantly minimise the amount of software that is relevant to safety certifications.

1.3.2 Mixed-Criticality Systems, OSS and System Architecture

The architecture presented in Section 1.2.2 has the strong disadvantage that it only relies
on isolationmechanisms that are given by the OS, Linux. Amore dependable alternative
is to rely on stronger isolation guarantees that are given by hardware-basedmechanisms:
virtualisation extensions. Embedded virtualisation substantially differs from common
enterprise, desktop or mainframe virtualisation [Hei08], where the technology has its
roots. Many of these traditional users of virtualisation consider the consolidation of
services as major motivation.

While hypervisors are often optimised for high throughput and optimal performance in
the desktop and enterprise segment, virtualisation solutions for real-time constrained
embedded systems significantly differ: the architecture needs to target low latencies,
deterministic computation cycles and maintaining real-time capabilities. The resulting
scenarios have received substantial attention during the last decade [BD13], and the
conceptual advantages and disadvantages of the many possible approaches to build such
systems arewell researched [Hei08; KW07; MRC05; CRM10; SK10a; Xi+11; Pin+14; Pin+17;
Li+19].

Nevertheless, many embedded hypervisors adopt established practices from classical
virtualisation: overcommitting of hardware, paravirtualisation [BDF+03; CRM10] or
emulation of devices, and guest scheduling [KW07]. Those techniques lead to software
runtime overheads, as the system software stack (the hypervisor as well its guests) must
implement significant amounts of code to implement those techniques. They are a
major source of hard to control indeterminism [Rie16; Xi+11; Kis11] and endanger Req. 1,
hard real-time requirements.

Static hardware partitioning is a special case of embedded virtualisation that exclusively
assigns hardware resources to isolated computing domains that execute on the same
logical platform. It makes the assumption that available resources are greater or equal

1.3 Research Context of this Thesis 17

than the required computational power: there is no need for sharing any resource
of the system. As mentioned before, this is already the case in numerous industrial
appliances.

Static hardware partitioning means that the assignment of physical resources to com-
puting domains is static, that is, the assignment does not dynamically change over time.
Partitioning implies the isolation across partitions or domains. Virtualisation extensions
of modern CPUs [AMD05; UNR+05; Int18b; VH11] can be exploited to create such static
and distinct execution environments. However, static hardware partitioning does not
yet give guarantees on implementing a real-time capable system architecture.

If it is possible to implement static hardware partitioning upon virtualisation extensions
of modern architectures with no (software-induced) hypervisor resp. virtual machine
monitor (VMM) overhead during system operation, then the underlying real-time guar-
antees of the execution platform (that must exist in any case) are inherited by execution
domains (i.e., the guests) by design and without any further software interaction. If, in
addition to that, the system guarantees freedom for interference across domains, I will
call it an ideally partitionable system. Yet, it remains an open question if modern COTS
are ideally partitionable systems.

The technique is not only beneficial for maintaining RT guarantees, but also for Req. 2:
One can argue that software that does not run during operation does not need to be
certified. Under ideal conditions, the hardware partitioning only sets up the partitioning
and never gets active during the operational phase. Only the state of the architecture
after partitioning needs to be considered for certification. This drastically reduces the
amount of code that is relevant for certification. Only hardware components require
certification, which, again, is required in any case.

However, the outlined architecture raises numerous engineering challenges especially
when being evaluated against real-world hardware. In the second part of this thesis, I
will provide answers to the following research questions:

Research Question 3: What are hardware requirements to implement ideal hardware parti-
tioning?

As I will conclude that RQ 3 is already possible under specific circumstances, but, in
general, not yet possible on current COTS hardware components, I raise the last research
question:

Research Question 4:What are the limitations on current COTS hardware to implement ideal
hardware partitioning? What are unavoidable overheads?

18 Chapter 1 Introduction

Contributions First, I will give a clear definition of the term ideal hardware partitioning,
and systematically evaluate associated hardware requirements. I present contributions
to architecture and implementation of a partitioning industrial open source hypervi-
sor that allows to build real-world systems that offer effective interference guarantees
derived from hardware partitioning.

While contemporary CPUs provide sophisticated virtualisation extensions, they still
cannot provide suitable interfaces to implement a fully zero-trap (i.e., no VMM inter-
action) ideal approach. Consequently, I elaborate on widely underestimated hardware
requirements that are necessary to implement hardware partitioning without hyper-
visor interception. The presented approach is a solution to enable safe coexistence of
workloads of mixed criticality on a single system for many general purpose use cases.

On real-world systems, static hardware partitioning is not possible without hypervisor
activity due to hardware limitations. Nevertheless, evaluations and microbenchmarks
underline the suitability of static hardware partitioning for numerous real-world use
cases. In particular, the microbenchmarks include an evaluation of mitigations against
Spectre-like attacks [Sch+19a; Min+19; Van+18; Wei+18; Lip+18; Koc+19; Can+18], as some
mitigations require intervention of the hypervisor, if the guest decides to protect its own
domain. I explain how architectural decisions reduce the attack surface for cross-domain
low-level hardware attacks, such as Spectre [Koc+19].

I will conclude that static hardware partitioning offers a promising and safe solution for
system consolidation—even on low-cost contemporary COTS hardware components.

Boundaries In contrast to existing solutions, only the payload of critical domains remain
relevant for safety certification, and, possibly, the thin hypervisor code base that is used
for partitioning. However, because of this, and as the case-specific deployment of the
solution depends on the requirements of the specific use-case, the suitability of the
approach needs to be addressed by safety experts.

I will intentionally not elaborate on concrete strategies how the approach can be certified
in particular as this is beyond the scope of this thesis. Nevertheless, the approach
successfullyminimises the amount of code that is relevant for safety certificationwithout
the loss of any functionality.

Furthermore, I will focus on the software stack and its minimisation by leveraging
hardware extension. Those extensions are relevant for certification. This thesis does
not cover aspects of the certifiability of hardware.

1.3 Research Context of this Thesis 19

1.4 Structure

This thesis is structured into twomajor parts. I begin with Part I that addresses the topic
Safety-critical systems, OSS and certification (investigating Section 1.3.1 and RQs 1-2) with
respect to Req. 2. Part II addresses Mixed-Criticality Systems, OSS and System Architecture
(investigating Section 1.3.2 and RQs 3-4) with respect to Req. 1 and Req. 3. The structure
of this thesis is outlined in Fig. 1.3. The rest of this thesis is structured as follows:

Part I Reconstruction and Analysis of Software Development Processes (pp. 25–95)
Part I of this thesis centres around quantitative software engineering. I develop a
methodology to reconstruct and quantify development processes in OSS projects.
I will use the framework to provide answers to questions on the process. In this
part, I lay the foundation to give answers to research questions RQ 1 and RQ 2
(Ref. Section 1.3.1).

Chapter 2 Reconstruction (pp. 25–53)
In this chapter, I address RQ 1. I present the methodology of PaStA, a soft-
ware engineering framework that reconstructs development processes of
OSS projects, by linking otherwise unorganised development artefacts (i.e.,
proceedings in the process before integration) to development results (i.e.,
software repositories, the result after the actual development process). This
connection is precondition to quantitatively answer further in-depth ques-
tions on development processes.

Chapter 3 Analysis (pp. 55–93) This chapter builds the fundament to answer RQ 2, the
adherence to or violations of development processes. Without the loss of
generality, I will exemplarily answer the question by conducting analyses on
the Linux kernel.

Part II System Consolidation of Safety- and Mixed-Critical Systems (pp. 99–153)
Part II of this thesis focuses on the system architecture for mixed-criticality sys-
tems. I present and evaluate Jailhouse, a Linux-based static partitioning hypervisor
that aims to address requirements in Section 1.2.1.

Chapter 4 Ideal Hardware Partitioning (pp. 99–123)
In Chapter 4, I present the architecture and philosophy of Jailhouse. Given the
architecture, I define the concept of ideal hardware partitioning, and derive
associated requirements on hardware to answer RQ 3. Finally, I evaluate
those requirements against COTS hardware and conclude that ideal hardware
partitioning on current COTS is realisable, but only under certain conditions.

20 Chapter 1 Introduction

Ch
ap

te
r6

:S
um

m
ar
y
an

d
Co

nc
lu
si
on

So
ftw

ar
e
En

gi
ne

er
in
g

Sy
st
em

Ar
ch

ite
ct
ur
e

Req.2
Certification

Req.1
Isolation

Req.3
Real-Tim

e

Part I: Reconstruction and Analysis of
Software Development Processes

Chapter 2: Reconstruction
Chapter 3: Analysis

Part II: System Consolidation
Chapter 4: Ideal Hardware Partitioning
Chapter 5: Evaluation and Discussion

RQ1

RQ2

RQ3

RQ4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7

Hypervisor

Linux RTOS RTOS

Figure 1.3.: Structure of this thesis. The software engineering and system engineering shares of this
work are split up into twomajor parts. Four chapters are used to answer RQs 1-4. Answers
to RQs will be given in the last Chapter 6, the Summary and Conclusion of the thesis.

Chapter 5 Evaluation and Discussion (pp. 125–151)
As there arise limitations on current COTS, I inspect those limitations and
investigate, if they constitute as barriers for real-world application of the
proposed approach. To answer RQ 4, I present a set of methodologies to
quantify the impact of the limitations on real-time systems. Given a specific
use-case on a specific platform, those measurements serve as a basis for
decision making if the approach is able to fulfil the requirements of a specific
application.

Chapter 6 Summary, Conclusions and Further Ideas (pp. 155–159)
In the last chapter of this thesis, I summarise the results of Part I and Part II in a
higher-level view, and draw conclusion on the consequences. I give answers to my
research questions, and complete this thesis with a concluding summary.

1.4 Structure 21

Part I

Reconstruction and Analysis of Software
Development Processes

Reconstruction 2
„In the practical world of computing, it is rather

uncommon that a program, once it performs
correctly and satisfactorily, remains unchanged
forever.

— NiklausWirth
Program Development by Stepwise

Refinement [Wir71]

SHARE-ALT
This chapter shares material with the OpenSym ’16 paper “Observing Cus-
tom SoftwareModifications: A Quantitative Approach of Tracking the Evolu-
tion of Patch Stacks” [RLM16] and the ICSE ’19 paper “The List is the Process:
Reliable Pre-integration Tracking of Commits on Mailing Lists” [RLM19].

Software for safety-critical systems requires certification (cf. Req. 2). Corresponding
regulatory norms and standards put highdemands on various aspects of the development
process. Hence, development processes in orthodox proprietary Enginner-to-Order
environments comply with those processual requirements.

Compared to conventional, proprietary industrial software, OSS exhibits different dy-
namics [MJ13], andoften requires fundamentally different developmentprocesses [Cor11]
because of project size and a high number of massively geo-dispersed stakeholders. Be-
cause of this nature of OSS, projects do not necessarilymeet certification criteria [Bir+08].
While OSS communities may have their own (more or less formally defined, and more
or less strictly followed) development process or guidelines, the process is defined by
and evolves within the community [Bul17a]. For most projects, processual requirements
that stem from safety-critical environments only play a subordinate role.

Nevertheless, OSS components are routinely deployed in industrial fields, and their
use is increasingly explored in safety-critical or mixed-criticality appliances [Fou18a;
Fou18b; LF18; BD13], such as medical devices or in automotive products. Especially for
core components of a system that implement business-wise non-differentiating features

25

such as the system-software stack or middleware, OSS provides adequate solutions that
have already proved to be reliable in other non-critical application domains (cf. Req. 1).
Yet, most OSS projects are, of course, not willing to adjust their development process(es)
to fulfil requirements for safety-critical systems for reasons explained in Section 1.3.1.

The question that remains is, if current effectively practised development processes in
OSS projects already fulfil these requirements. To provide evidence, it is mandatory to
be able to quantitatively capture and trace the process to answer this question.

In this chapter, I lay the foundation to answerRQ 1. I present the PaStAmethodology and
tool that is able to reconstruct the otherwise inaccessible development processes of OSS
projects in ex-post analyses. The results of PaStA can be used to answer further questions
on properties and characteristics of the underlying process. Later, in Chapter 3, I will
use the methodology to give insights in OSS development processes.

2.1 Overview

Nowadays, the source code of projects is usually organised in version control systems
(VCSs), such as SVN or git. They allow for tracking the changes of the software on a fine-
granular level: commits. Commits in repositories typically consist of three components:
the actual changes to the code, an informal description that motivates and explains
the code change, and metadata, such as information on the author of the code. VCSs
keep track of all changes that were made to the project, and allow for retrospective
inspections of the evolution of a project at any point in time.

While repositories keep track of all changes to the project, they miss information on
how the change materialised. What happened before integration to the repository? Was
the change controversially discussed? How long did integration take, and how many
revisions of the patch were required until final integration?

Furthermore, repositories only keep track of changes that made it into the project.
Naturally, repositories miss patches that were never, or at least not yet, accepted for
integration. While this may sound futile, as those patches do not directly affect the code,
they do affect architectural decisions of the project. Why was a change rejected? Was it
rejected after careful review, or was it simply ignored?

Given a formally defined development process, it is possible to provide answers to
these questions. Such performance indicators can support argumentations for safety
certification efforts, as they prove adherence to, or violations of the development process
by providing evidence on a quantitative basis.

26 Chapter 2 Reconstruction

These hypothetical questions–some of them will be addressed in Chapter 3–shall illus-
trate that the software repository is the result of a preceding process. While a consider-
able corpus of research on software evolution focuses on mining changes (i.e., commits)
in software repositories, it omits their pre-integration history.

Software patches may have come a long way before their final integration into the
official branch (known as mainline or trunk) of a project. There are many possible ways
of integration. Among others, the origin of a patch can be amerge fromother developers’
repositories (i.e., integration of branches or patches from foreign repositories), pull
requests on web-based repository managers such as GitHub or GitLab, vendor specific
patch stacks, or mailing lists (MLs).

In particular, MLs have widely been in use for software development processes for
decades [Ere03]. They have a well-known interface (plain text emails), and come with
an absolute minimum of tool requirements (i.e., a mail user agent). Because of their
minimality, simplicity, scalability, reliability and interface robustness, they are still
widely used inmanyOSSprojects. Inparticular,MLs are a core infrastructure component
of long-lasting OSS projects such as low-level systems software (e.g., QEMU, U-Boot,
GRUB, etc.), operating systems (e.g., the Linux kernel) or foundations (e.g., Apache, GNU).
Mailing lists form the backbone of the development processes [HNH03] in projects that
are potential candidates for base platform components for safety-critical systems.

MLs are not only used to ask questions, file bug reports or discuss general topics, but
implement a patch submit-review-improve strategy for stepwise refinement [Wir71] that
is typically iterated multiple times before a patch is finally integrated to the repository
(cf. Fig. 2.1).

Therefore, MLs contain a huge amount of information on the pre-integration history of
patches. A commit in a repository may be the outcome of that process, while all inter-
mediate steps leave no direct traces in the repository. Mailing lists allow for analysing
development history and code evolution, but also enable to inspect reviewing and
maintenance processes. They further allow for inferring organisational [Job+17] and
socio-technical [Bir+06; Her07; Val+07] aspects of software development. This all is
possible because MLs contain information on interactions between developers.

To assess non-formal OSS development processes, mapping patches on mailing lists
to repositories is a key requirement, because the mails contain the facts: They are the
artefacts of the development process. Together with the outcome of the process—the
repository—, this forms a solid base for further analysis. Patches that appear on mailing
lists are manually selected (cherry-picked) by the maintainer before integration into the

2.1 Overview 27

Figure 2.1.: Typical workflow: A patch gets resubmitted and improved for two times, before its final
integration into the repository.

repository. They are also routinely combined (squashed) and modified (amended) on-the-
fly, which is convenient for developers, but complicates tracking. Either way, a direct
connection between the history on the mailing list and the repository commit is lost in
the process [BGD07]. While this issue can be solved with appropriate technical means
for the future, it does not solve the lack of traceability in the past, which in particular is
important for certification.

I present a methodology accompanied by comprehensive automated tool support.1 The
methodology of the toolkit PaStA (Patch Stack Analysis) allows for:

1. Reconstruction of Software Development Processes (this Chapter)

a) tracking several revisions of a patch on mailing lists.

b) mapping those patches on lists to upstream commit hashes, if the patch was
integrated.

2. Analysis of Software Development Processes (Ref. Chapter 3).

a) extracting process characteristics, that is, performance indicators of the
development process.

b) measuring the adherence to and violations of the process.

I identify and formalise 1. as cluster analysis, and provide an algorithm to track the
evolution of code change, that is, to reconstruct the development process. I will provide
an in-depth evaluation of my, as well as of other approaches, together with a quantifica-
tion of the accuracy of the approach. The traceability of code will be reduced to finding
similar patches.
1Published under the GPLv2 license at https://github.com/lfd/PaStA.

28 Chapter 2 Reconstruction

https://github.com/lfd/PaStA

2.2 Fundamentals

From an analytical standpoint, the downside of patch submission on mailing lists is
asynchronicity, as there is no direct connection between themailing list and the software
repository. Maintainers manually integrate patches from the list and commit them to
the repository. This process is typically assisted by tools provided by the version control
system.2 During this process, the connection of the email with the patch (identified by
the unique Message-ID header of the mail) and the commit in the repository (usually
identified by a commit hash) is lost.

Other difficulties are contextual divergences and textual differences [BGD07]. The
commit in the repository may significantly vary from the patch on the mailing list,
as other patches between submission and integration might have affected the patch.
Additionally, maintainers may introduce additional changes to the patch.

There is also no connection between several revisions of a patch within the mailing list.
A patch undergoes a certain evolutionary process between revisions, hence patches of
different revisions may significantly differ as well, while they still introduce the same
logical change.

Structure of Code Changes Independent of the type of submission, I formally define a
patch p as a 2-tuple that consists of a commit message and a diff. This applies to patches
that are posted on mailing lists as well as to commits that can be found in repositories.
While the commit message informally describes the changes, the diff annotates the
actual modifications (insertions and deletions) surrounded by a few lines of context.
Context lines ease the understandability of the patch for human review. Patches can also
include meta information, such as the author of a patch or the timestamp of its creation
(Author Date). Not all types of patches contain the same set of metadata. Emails with
patches contain several mail headers, while those headers are removed when the patch
is applied to the repository. Repositories, in contrast, contain information on the exact
spatial location of the patch.

A diff of a file consists of a sequence of hunks that describe the changes at a textual level.
Every hunk h is introduced by a range information that determines the location of the
changes within a file and contains a section heading hhead. Section headings display
“the nearest unchanged line that precedes each hunk” [MES13] and are determined by a
regular expression. Range information is followed by the actual changes: lines h+ that
are added to the new resulting file are preceded by ‘+’, lines h− that are removed from
2For example, git am (apply mail frommailbox) or git cherry-pick (apply the changes introduced by some
existing commits).

2.2 Fundamentals 29

the original file are preceded by ‘−’ and lines h◦ that did not change are preceded by a
whitespace ‘ ’ (cf. Listing 2.1).

Metadata may also change over time [Bir+09; GAH16]; even the author of a patch may
change. Therefore, metadata is intentionally not considered in the similarity analysis.

Mapping patches on MLs to commits in repositories requires to understand common
workflows in projects [Ere03]: When the author of a patch wants his or her patches to
be integrated in the project, they need to send their patch or patch series to the mailing
list of the project. In the vast majority of cases, the patches are created with tools of the
VCS. Typically, the VCS provides functionality to directly send the patches as emails.3

Patch Series A patch series is a cohesive set of mails that contain several logically
connected patches that, in the big picture, introduce one logical change that is split up
in fine granular steps. Listing 2.1a and Listing 2.1b show two successive mails in a patch
series. Again, the submission of a patch or patch series is typically tool-assisted by the
VCS.

Code Integration Process After patches are submitted, reviewers or any subscriber of
the list may comment on them. This is done by starting a free-form textual discussion
by replying to a mail that contains a patch. Inline comments refer to the related code
lines. As replies on emails reference the Message-ID of the original email, it is possible
to reconstruct the whole mail thread (i.e., the discussion) of the thread. I will exploit
this important property later in the analysis in Chapter 3.

Concerning change integration, the reviewing process may end up in the following
scenarios:

1. The maintainer decides to integrate (i.e., to commit) the patch(es).

2. The maintainer decides to reject the patch(es).

3. The patch(es) need further improvement and need to be resubmitted to the list.

It is not unusual that 3. is repeated several times. In this case, further revisions of
the patch are typically tagged in the email subject header with [PATCH v<N>] prefix,
where <N> denotes the revision round. This iterative process of resubmitting further
revisions of changes is a fundamental aspect of the development process and makes it
necessary that a patch on a mailing lists must not only be linked to the repository, but
also against other revisions of the patch in order to track its evolution. Fig. 2.1 illustrates
3For example, the format-patch in combination with the send-email tools of git.

30 Chapter 2 Reconstruction

a typical workflow: a patch was resent two times (v2 and v3), before being integrated to
the repository.

Once maintainers decide to accept a patch, they may still amend the commit message
or the code. Depending on the submission process of the project, maintainers or other
persons working on the patch add additional tags to the commit message, such as Acked-
by: <mail>, Tested-by: <mail>, Signed-off-by: <mail> among others. The exact
usage of those tags depend on the project, and are part of the code review process, and
hence, part of the development process.

Reviewers that vote for inclusion of the patch reply to it with a mail that adds an Acked-
by, where <mail> contains the email address of the person who acknowledged the patch.
Anyone who successfully tested a patch may send their Tested-by. The Signed-off-
by tag indicates that the patch conforms with the Developer’s Certificate of Origin.4

Maintainers pick up mails with such tags (i.e., mails In-Reply-To the initial patch)
and append them to the commit message before integration. It is the decision of the
maintainer whether to integrate the patch or not.

A patch on a list may significantly differ from its final version in the repository, which
makes it hard to link them. Listing 2.1 demonstrates the complexity of finding simi-
lar patches. This examples contains two patches that appeared on the mailing list of
BusyBox [BB18] and the eventual commit in the repository. In this case, the maintainer
(Denys Vlasenko) heavily changed the original patches (authored by Tias Guns) that
were sent to the project’s mailing list: He picked up both mails, consolidated them to
one commit (known as squashing patches) and additionally changed the commit message.
During this process, metadata changed as well: the author date of the commitmessage is
neither related to [PATCH 2/6] nor to [PATCH 3/6]. Still, both emails are related to the
commit in the repository. This example was automatically found and linked by PaStA.

The complexity of finding similar patches is aggravated by the fact that patches are
relative to a specific state of the code base, determined by the commit where the patches
base on. When the latter changes between the time a patch was submitted and it was
integrated, as other patches had been applied meanwhile, the version control system
tools try to (semi-)automatically adopt the changes, which leads to different context
information despite identical changes. If automatic methods fail, merge conflicts must
manually be solved by humans.

Multiple maintainers may commit the same patch to their own branch. In this case, a
patch occursmultiple times on themaster branch of the repository, once those branches

4See Linux’s Documentation/process/submitting-patches.rst. Other projects use similar tags.

2.2 Fundamentals 31

https://www.kernel.org/doc/html/latest/process/submitting-patches.html

1 Message − ID : <1338734589 −11512 −3 − g i t −send −email − t i a s@u l y s s i s . org >
2 Date : Sun , 3 Jun 2012 16 : 4 3 : 0 4 +0200
3 To : D i s cu s s i on and development o f BusyBox <busybox . busybox . net >
4 From : T i a s Guns < t i a s@u l y s s i s . org >
5 Sub jec t : [PATCH 2 / 6] andro id : use BB_ADDITIONAL_PATH
6
7 Signed − o f f −by : T i a s Guns < t i a s@u l y s s i s . org >
8 −−−
9 in c l ude / p la t fo rm . h | 4 ++++

10 1 f i l e changed , 4 i n s e r t i o n s (+)
11
12 d i f f −− g i t a / i n c l ude / p la t fo rm . h b / i n c l ude / p la t fo rm . h
13 index d79cc97 . . f250624 100644
14 −−− a / i n c l ude / p la t fo rm . h
15 +++ b / i n c l ude / p la t fo rm . h
16 @@ −334 ,6 +334 ,10 @@ typede f unsigned sma l l u i n t ;
17 # de f i ne MAXSYMLINKS SYMLOOP_MAX
18 # end i f
19
20 +# i f de f ined (ANDROID) | | de f ined (__ANDROID__)
21 +# de f i ne BB_ADDITIONAL_PATH ” : / system / sb in : / system / bin : / system / xb in ”
22 +# end i f
23 +
24
25 /* −−−− Who misses what ? −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */
26
27 −−
28 1 . 7 . 1 0

(a) [PATCH 2/6] in a series: the author adds some conditional preprocessor definitions.

are merged. In practice, it means that I can not shortcut the analysis once a patch on is
mapped to a commit in the repository.

Those and other facts [Bir+09; Jia+14] underline that similar patches can not be simply
linked against each other by examining their textual equality.

32 Chapter 2 Reconstruction

1 Message − ID : <1338734589 −11512 −4 − g i t −send −email − t i a s@u l y s s i s . org >
2 Date : Sun , 3 Jun 2012 16 : 4 3 : 0 5 +0200
3 To : D i s cu s s i on and development o f BusyBox <busybox . busybox . net >
4 From : T i a s Guns < t i a s@u l y s s i s . org >
5 Sub jec t : [PATCH 3 / 6] andro id : f i x ’ i on i ce ’ , add i o p r i o de f i n e s
6
7 patch i n s p i r e d by ’ BusyBox Patch V1 . 0 (V i t a l y Greck) ’
8 h t tp s : / / code . google . com/p / busybox − andro id / downloads / d e t a i l ?name=pa [. . .]
9

10 Signed − o f f −by : T i a s Guns < t i a s@u l y s s i s . org >
11 −−−
12 in c l ude / p la t fo rm . h | 2 ++
13 1 f i l e changed , 2 i n s e r t i o n s (+)
14
15 d i f f −− g i t a / i n c l ude / p la t fo rm . h b / i n c l ude / p la t fo rm . h
16 index f250624 . . ba534b2 100644
17 −−− a / i n c l ude / p la t fo rm . h
18 +++ b / i n c l ude / p la t fo rm . h
19 @@ −336 ,6 +336 ,8 @@ typede f unsigned sma l l u i n t ;
20
21 # i f de f ined (ANDROID) | | de f ined (__ANDROID__)
22 # de f i ne BB_ADDITIONAL_PATH ” : / system / sb in : / system / bin : / system / xb in ”
23 +# de f i ne SYS_ i op r i o _ se t __NR_ iopr io_se t
24 +# de f i ne SYS_ iop r i o_ge t __NR_ iopr io_get
25 # end i f
26
27
28 −−
29 1 . 7 . 1 0

(b) [PATCH 3/6] in a series: the author adds further definitions under the same condition.

1 commit 3645195377 b73bc4265868c26c123e443aaa71c6
2 Author : T i a s Guns < t i a s@u l y s s i s . org >
3 Date : Sun Jun 10 14 : 2 6 : 3 2 2012 +0200
4
5 p la t fo rm . h : Android tweaks : i o p r i o de f ines , BB_ADDITIONAL_PATH
6
7 Signed − o f f −by : T i a s Guns < t i a s@u l y s s i s . org >
8 Signed − o f f −by : Denys V lasenko <vda . l inux@goog lemai l . com>
9

10 d i f f −− g i t a / i n c l ude / p la t fo rm . h b / i n c l ude / p la t fo rm . h
11 index d79cc97 . . ba534b2 100644
12 −−− a / i n c l ude / p la t fo rm . h
13 +++ b / i n c l ude / p la t fo rm . h
14 @@ −334 ,6 +334 ,12 @@ typede f unsigned sma l l u i n t ;
15 # de f i ne MAXSYMLINKS SYMLOOP_MAX
16 # end i f
17
18 +# i f de f ined (ANDROID) | | de f ined (__ANDROID__)
19 +# de f i ne BB_ADDITIONAL_PATH ” : / system / sb in : / system / bin : / system / xb in ”
20 +# de f i ne SYS_ i op r i o _ se t __NR_ iopr io_se t
21 +# de f i ne SYS_ iop r i o_ge t __NR_ iopr io_get
22 +# end i f
23 +
24
25 /* −−−− Who misses what ? −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− */

(c) Maintainer squashed both mails to one commit and amended the commit message.

Listing 2.1: Example of twomails and one commit that were automatically found and linked by PaStA.

2.2 Fundamentals 33

2.3 Clustering Similar Patches

Let C be the set of all patches (commits) in a software repository, andM be the set of all
patches of their potential origin. Note thatM canbeboth, patches thatwere submitted to
mailing lists (i.e., mails containing patches) or commits in other branches of repositories
(e.g., patches on other branches of the repository5). The universe U =M∪ C forms the
set of all patches.

In is most general form, the informal equivalence relation S: patches are semantically
similar can be defined as S ⊆ U × U . This covers all eventualities, including situations
like patch committed twice in the repository, patch went through several rounds of review
before integration, or patch was not integrated.

The foundation of the analysis is the algorithm sim that is able to quantify the similarity
of two patches within the universe U :

simtf,th,dlr,w: U × U → [0, 1] (2.1)

The algorithm’s sensitivity is controlled by four parameters. The principles of sim are
explained in Section 2.3.1; the influence of the parameters is explained in Section 2.3.2.
It measures the similarity of two patches where 0 denotes complete dissimilarity (i.e.,
no commonalities) and 1 denotes complete equivalence on a textual level. Note that
symmetry

∀a, b ∈ U : simtf,th,dlr,w(a, b) = simtf,th,dlr,w(b, a) (2.2)

and reflexivity
∀a ∈ U : simtf,th,dlr,w(a, a) = 1 (2.3)

hold.

Let V = U be the set of all vertices of the undirected graphG = (V,E). Every edge in E

connects two patches that exceed the acceptance threshold ta:

E = {{a, b} ⊆ U |simtf,th,dlr,w(a, b) > ta} (2.4)

The connected components ofG form subgraphs of similar patches that divide U into
disjoint partitions. Those partitions induce equivalence classes

[x]S = {y ∈ V |x G y} (2.5)

5In Appendix A.1, I will use this property to quantify mainlining efforts of out-of-tree developments by
comparing the content of different repositories.

34 Chapter 2 Reconstruction

where G denotes reachability. The corresponding equivalence relation∼S can be used
to determine all equivalence classes by pairwise patch comparison in a process that
iteratively merges equivalence classes where the similarity of two patches exceeds a
certain threshold ta (cf. Fig. 2.2).

Ordinary pairwise comparison of n patches against each other requiresO(n2) compar-
ison operations. As the necessary string operations are computationally intensive, I
employ a coarse-grained pre-evaluation that serves as a filter. Strategies to mitigate
combinatorial explosions will be presented in Section 2.3.3.

From another perspective, the partition of the equivalence relation S can also be seen as
an unsupervised threshold-based flat clustering of U [SMR08]. In Section 2.4, I will use
this fact to evaluate the accuracy of the approach with external evaluation methods for
clusterings. With this, the problem of finding clusters of similar patches can be reduced
to a function sim, which rates the similarity of two patches. In the following, I introduce
sim, the function that scores the similarity of two patches, and its set of parameters that
control the sensitivity of the function.

2.3.1 Rating Similarity of Two Patches

As mentioned before, in order to group patches into equivalence classes and find them
in the base project, it is necessary to detect similar patches and commits. Generally,
a patch consists of a unique identifier (i.e., the commit hash in case of a commit in
the repository, or Message-ID in case of a patch on a ML), a descriptive message that
informally summarises the modifications, and so called diffs [MES13] that describe the
actual changes of the code.

Existingwork ondetecting similar code fragments primarily targets on detecting code du-
plicates [DRD99] or on revealing code plagiarism. Possible approaches include language-
dependent lexical analysis, code fingerprinting [SH09], or the comparison of abstract
syntax trees [Jia+07]. However, all these approaches concentrate on the comparison of
code fragments and not on the comparison of similar diffs or commits, as required in my
case.

In contrast to the detection of code plagiarism or the detection of code duplicates, the
content (on a textual level) between successive revisions of the same patch tends to stay
very close. For this case, string or edit distances provide a straight forward and powerful
language independent method for detecting similar code fragments.

2.3 Clustering Similar Patches 35

α:
Sim

ilar
ity

net
wo

rk

β:
Par

titi
ons

of s
imi

lar
pat

che
s

U

U

0.83

0.97

0.81

0.96
0.98

0.88
0.93

0.88

0.92

0.94
0.96

0.86

0.86

0.92
0.82

0.89

0.89

0.87
0.93 0.82

0.82

0.90

0.75 0.72

0.57

0.41 0.07

0.67

0.73

0.13

0.29

0.76

0.66

0.53

0.52

0.17

0.17

Figure 2.2.: α: sim determines the similarity (edge weights) of patches. Dashed edges remain below
the threshold ta = 0.80. β: Connected components above the threshold form equivalence
classes of similar patches. Green and orange vertices exemplarily denote patches on MLs
(M) and commits (C) respectively.

The following properties can be observed in projects that use MLs:

• Commitmessages of upstreampatches tend to bemore verbose, but still are similar
to those on patch stacks.
Rationale: Maintainers tend to amend or extend commit messages for better
understandability.

• Variable and identifier names do not significantly change between different revi-
sions of the same logical change.
Rationale: If an author changes code of at a specific location, they will usually use
the identifier names of the surrounding context. Even in case ofmajor refactorings,
at least the lines that have to be removed will stay the same.

• Range information (i.e., the location of a hunk within a file) of similar hunks
changes between different revisions of a patch.
Rationale: The code base of active projects are in motion. Multiple authors may
change the same locations in parallel. If an author sends a patch that modifies, for

36 Chapter 2 Reconstruction

example, a function within file, it is not unusual that another patch was integrated
in the meanwhile and changed surrounding context of the patch, which displaces
the patch. While range information within the file changes, it is still very likely
that the original patch still addresses the same routine.

Until final integration or final rejection, patches evolve over time. While the commit
message and the code may change, they still introduce the same logical change. As the
commit message and diff may evolve independently, I calculate two independent scores
that quantify the similarity of the two commit messages and the similarity of the two
diffs (rmsg, rdiff ∈ [0, 1]). Again, 0means no commonalities while 1means equivalence
on a textual level.

Similarity of commit messages Maintainers may amend or reword commit messages
before they integrate the patch. They can also rearrange or reformat the patch to make
it easier to understand, or to avoid ambiguities. Nevertheless, keywords that are used in
those messages tend to remain the same. All tags (Ref. Section 2.2) that were added by
maintainers, will be removed before comparing the commit messages, as they do not
appear in the initial patch. The next step is to tokenise and sort all words in a commit
message. The tokens are separated by whitespaces, and then pairwise compared against
each other by using the Levenshtein string distance [Lev66]. The closest match for each
token is selected for further processing. The arithmetic mean over all matches forms
the score rmsg. I chose the Levenshtein string distance together with tokenisation, as
it respects restructured messages as well as minor changes in wording, such as typo
fixes.

Similarity of diffs Even if code changes or evolves over time, different versions of a patch
still tend to affect the same code paths and files and use similar keywords or variable
names. Diffs are compared in an iterative process. A single patch may modify several
files. Hence, when comparing the diff component of two patches, I only consider to
compare changes of files within similar filenames.6 The threshold of the Levenshtein
similarity for filenames is determined by the parameter tf, which must be exceeded if
the diff of two files is considered for actual comparison.

A diff of a given file may consist of several hunks, which describe changes to a certain
section within the file. Hunks are annotated with the line number within the file and a
hunk header that describes the context of the change (cf. Listing 2.1). They display ”the
nearest unchanged line that precedes each hunk” [MES13]. The hunks of the two diffs
are pairwise compared against each other, if two adjacent hunk headers exceed a certain
6I consider similar filenames, as filenames may change between submission and integration of a patch.

2.3 Clustering Similar Patches 37

similarity threshold th. Hunks for which a mapping can not be established are ignored,
as the hunk might have been added or removed in one of the patches. To compare those
hunks, I disregard context lines as they might have changed in the meanwhile, compare
insertions only against insertions, and deletions only against deletions. Therefore, I
again tokenise deletions resp. insertions and use the Levenshtein string distance to
compute a score for the hunk. The arithmetic mean of scores of all hunks provides the
similarity score for the diff, rdiff.

The algorithm calculates a rating for the similarity of the commit message and a rating
for the similarity of the diff. When comparing diffs, only similar hunks of commonly
changes files are compared. Insertions and deletions are compared independently.

Algorithm1describes the evaluationof twopatches. The algorithmcalculates two ratings,
a message rating rmsg ∈ [0, 1] and a diff rating rdiff ∈ [0, 1]. r is the weighted arithmetic
mean of rmsg and rdiff, weighted by a heuristic factor w ∈ [0, 1]. If the resulting rating
exceeds the threshold ta, r ≥ ta, the two patches are classified similar. Given a patch,
GETCOMMIT returns the corresponding message m and diff d. STRIPTAGS removes all
tags (CC:, Signed-off-by:, Acked-by:,…) as they are not relevant for comparing the content
of commit messages. Given the diff of a patch, CHANGEDFILES returns all touched files
of the diff. GETHUNKS returns all hunks of the diff of a file while HUNKBYHEADING
searches for the closest hunk which heading matches x with a rating of at least th given
a section heading x and the diff of a file. DIST takes either two strings or two lists of
strings and returns a rating between 0 and 1, where 0 denotes no commonalities and 1
denotes absolute similarity.

2.3.2 Parameters

The extensive use of string metrics for measuring the similarity of different parts of a
patchopens awide spectrum for different thresholds of similarity. Additional parameters
(tf, th, dlr, w, ta) investigate the structure of the patch and control the sensitivity of the
comparison.

tf: filename threshold A file might have been renamed in the time window between the
submission and acceptance of a patch. As mentioned above, the algorithm only consid-
ers the pairwise comparison of files with a similar filename. The filename threshold
(tf ∈ [0, 1]) denotes a similarity threshold for filenames that must be exceeded if two
files shall be considered for comparison.

38 Chapter 2 Reconstruction

Algorithm 1Measure the similarity of two patches.
1: function SIM(a, b, tf, th, dlr, w)
2: if not PREEVAL(a, b) then
3: return 0
4:
5: (ma,da)←GETPATCH(a)
6: (mb,db)←GETPATCH(b)
7: dmin ←min(len(da), len(db))
8: dmax ←max(len(da), len(db))
9: if dmin/dmax < dlr then
10: return 0
11:
12: rmsg ←DIST(STRIPTAGS(ma), STRIPTAGS(mb))
13: rdiff ← []
14: for each filea ←CHANGEDFILES(da) do
15: for each fileb ←CHANGEDFILES(db) do
16: if DIST(filea, fileb) < tf then
17: continue
18: hunksa ←GETHUNKS(da, filea)
19: hunksb ←GETHUNKS(db, fileb)
20: rf ← []
21: for each hunka ← hunksa do
22: for each hunkb ← hunksb do
23: if DIST(hunka, hunkb) < th then
24: continue
25: rf .append(DIST(hunk+a ,hunk

+
b))

26: rf .append(DIST(hunk−a ,hunk
−
b))

27: rdiff.append(MEAN(rf))
28: rdiff ←MEAN(rdiff)
29: return w · rmsg + (1− w) · rdiff

th: hunk header threshold Within a file, the location of a hunk might have moved in the
time window between submission and acceptance of a patch. Either the author moved
the location of the hunk, the upstream location changed or amaintainermoved the code.
Hunk headings try to ease the readability of the patch. Regular expressions backward-
search for anchor lines that will appear in the hunk heading, such as, for example,
function names. The hunk heading threshold (th ∈ [0, 1]) denotes the similarity of two
hunk headings of hunks that must be exceeded if two hunks shall be considered for
comparison.

dlr: diff-length ratio Similar patches only slightly differ in size. It is unlikely that a patch
that a simple bug fix that modifies one single line of code is related to a patch that

2.3 Clustering Similar Patches 39

introduces a new feature with hundreds of lines of code. Because of this, patches are
considered dissimilar if the diff-length ratio (dlr ∈ [0, 1]), which is the fraction of the
number of changed lines of the smaller patch by the number of lines patched by the
bigger patch, is not exceeded.

w: commit-diffweight Different maintainers in different projects often have different
strategies of how they handle patches. In some projects, maintainers heavily modify
commit messages (see Listing 2.1), while in other projects maintainers attach less impor-
tance on the commitmessage and leave it as it is. However, instead of asking for a further
revision of a patch, they might modify the code on their own. Since I calculate two
independent scores for the commit message and for the diff, PaStA can be adjusted to
the peculiarities of a project. A heuristic factorw ∈ [0, 1]weights the relative importance
of rdiff to rmsg and denotes the overall similarity:

simtf,th,dlr,w(a, b) =

0 if min(a, b)/max(a, b) < dlr

w · rmsg(a, b) + (1− w) · rdiff(a, b) else
(2.6)

ta: auto accept threshold The auto accept threshold ta denotes the required score for
patches to be considered similar. Patches are only considered similar, if

simtf,th,dlr,w(a, b) ≥ ta (2.7)

Section 2.4 investigates the significance of the chosen set of parameters.

2.3.3 Reduction of problem space and clustering patches

Scalability is a concern of my approach. Consider a huge project like the Linux ker-
nel. The mailing list archive of the major mailing list of the Linux kernel, the Linux
Kernel Mailing List (LKML) (linux-kernel@vger.kernel.org), contains ≈ 2.8 × 106

mails where from 2002-01 – 2018-07, and |M| ≈ 8.5 × 105 mails contain patches. The
corresponding range in the repository (≈v2.6.12–v4.18) contains |C| ≈ 7.6× 105 commits.
This leads to a patch universe of |U| ≈ 1.6× 106 entries, with a total number of

(|U|
2

)
≈

1.3× 1012 pairwise comparisons. A significant reduction of this number is required for
practical application of the approach.

Hence, I introduced a preevaluation phase (PREEVAL in Algorithm 1) that drastically
reduces the impractical number of pairwise comparisons.

40 Chapter 2 Reconstruction

linux-kernel@vger.kernel.org

TimeWindow First and foremost, I only consider pairs of patches for comparisonwithin
a certain time window. Two patches will only be considered for similarity rating, if they
were submitted within a time window of one year. In the evaluation, I show that this
covers the vast majority (i.e., 99.5%) of all patches.

Pre-filter Heuristics Secondly, two patches can not be similar if they do not modify at
least one common file. This fact can be used for further optimisation: only select pairs
of patches that modify at least one similar file. In addition to that, the diff-length-ratio is
also a computationally inexpensive measure to exclude patches of disproportional size
from further cost-intensive evaluation.

In addition to that, I first determine clusters of similar patches for emails (M×M).
At the beginning of the evaluation, every email is assigned to its own single-element
cluster. I successively merge clusters in an iterative process by comparing representa-
tives of clusters against each other. A representative of a cluster is the patch with the
youngest submission date. This patch is chosen as representative, as it will have the
closest similarity with further revisions, or with the commit in the repository, if it was
integrated.

After the creation of the clusters for emails, representatives of those clusters are com-
pared against the commits in the repository (M×C).

2.3.4 Working with Mailing List Data

The first step of the process is the acquisition of mailing list data. Naturally, this can be
done by subscribing to mailing lists. However, this will only capture incoming emails
since subscription and misses historic mailing list data.

The Linux Kernel community (as well as many other communities) officially provides
mailing list archives.7 As archiving method, they use the public-inbox storage format.8

The public-inbox approach stores mails in git repositories and provides a convenient
data exchange format as standard tooling can be used to search for or to extract mails
from the repository. Different mailing lists are stored in separate repositories.

However, reliable analyses with resilient results require full coverage of all mailing list
data for the time frame of interest. While official resources reach back to early days of
Linux, archives do not cover all mailing lists. At the time of writing this thesis, only a
7For the Linux kernel, refer to http://lore.kernel.org.
8See https://public-inbox.org/README.html.

2.3 Clustering Similar Patches 41

http://lore.kernel.org
https://public-inbox.org/README.html

subset of≈100 lists of over 200 referenced lists of the project are provided by the Linux
Foundation.

Therefore, I subscribed to all >200 publicly available lists and collect mailing list data
since May 2019. Our group’s archives receive regular updates and are publicly avail-
able.9

The second step is to filter relevant emails containing patches and to convert them to
a unified format that can be used for further processing [Bir+06]. There are plenty of
methods how an user may send a patch, or how the mail user agent (MUA) may treat
(and mistreat) the message. PaStA’s parser is able to identify the most commonly used
methods. It respects patches in attachments, multiple patches in attachments, inlined
patches, and is able to repair several erroneous encodings that frequently occur on
mailing lists.

2.4 Evaluation

The results of a heuristic method depend on the chosen set of parameters. In the
following, I identify significant predictors from the available set of tuneables, and
further evaluate the algorithms accuracy for the optimal choice.

To establish a ground truth, I chose a one-month time window (May 2012, a typical
month of Linux kernel development without any exceptional events) of the high-volume
LKML. Assisted by tool support, I extracted mails with patches and manually compared
them against a three month time window in the repository in an elaborate and time-
consuming task using interactive support of PaStA. The creation of a sound ground
truth requires domain-specific knowledge to judge the relationship of patches, which is
available by my active involvement in the respective communities.

The same data was reanalysed with PaStA, under permutation of parameters in a rea-
sonable range, as shown in Table 2.1. Prior to choosing the exact parameter ranges, I
performed a coarse-grained analysis to roughly estimate the influence of parameters.
The chosen domains result in 803,682 different analysis runs.

In the observed time frame, the list received 16,431 emails. Among these, 5,470 were
recognised as patches (33.3%). Assisted by PaStA (and supported by an interactive
interface that ensures a swift workflow), the patches were compared against all commits
between Linux kernel versions v3.3 and v3.6 (34,732 commits). Those commits are
9Available at https://github.com/orgs/linux-mailinglist-archives/

42 Chapter 2 Reconstruction

https://github.com/orgs/linux-mailinglist-archives/

within the time window 2012-03-18 – 2012-09-30 (see Section 2.4.1 for a justification of
this choice).

The ground truth consists of 3,852 clusters of patches, where 2,525 clusters are linked to
at least one commit in the repository. 990 clusters contain more than one email (e.g.,
multiple revisions of a patch), 394 clusters more than two emails, and 154more than
three emails. 1,712 clusters contain exactly one email, which means the changes were
immediately accepted after their initial submission without further refinements.

The ground truth is then compared against all clusters from the permutation of param-
eters as shown in Table 2.1. In other words, the ground truth is compared against the
803,682 results of PaStA.

2.4.1 External Evaluation

External evaluation methods quantify the similarity of two clusterings [SMR08]. While
there are many standard evaluation methods available, the correct choice relies on the
structure of the clustering [Ami+09]. In contrast to typical clustering problems where a
large number of elements (e.g., documents) is distributed to a small number of clusters
(e.g., document types), clustering similar patches entails a large number of clusters
(similar patches) with only few elements (patch revisions and commits in repositories)
per cluster. This inherently implies a considerable number of “true negatives” (TN),
since two randomly chosen elements are assigned to two distinct clusters with high
probability. For a sufficiently large number of clusters, any random clustering will
exhibit a high number of TNs.

Several external evaluation methods were tested for their suitability: mutual infor-
mation score [SMR08], purity [SMR08], V-measure [RH07], and the Fowlkes-Mallows
index [FM83]. Purity is not suitable for the problem because it intrinsically produces
good results for large cluster count. A high number of clusters always implies good

Table 2.1.: Set of parameters used for evaluation.

Parameter Description Interval Step

tf threshold filename [0.60, 1.00] 0.05
th threshold heading [0.15, 1.00] 0.05
dlr diff-length ratio [0.00, 1.00] 0.10
w message-diff weight [0.00, 1.00] 0.10
ta threshold auto-accept [0.60, 1.00] 0.01

2.4 Evaluation 43

Filename Similarity Threshold Hunk Header Similarity Threshold

0.6 0.7 0.8 0.9 1.0 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Threshold

Fo
w
lk
es
-M

al
lo
w
sI
nd

ex

Figure 2.3.: Boxplot of irrelevant parameters: filename and hunk header threshold have no substantial
influence.

purity [SMR08]. The V-measure is the harmonic mean of two other measures, complete-
ness and homogeneity, and also produces good results when many clusters are present.
I consequently choose the Fowlkes-Mallows index, since it is not sensitive to the number
of TN, and shows robust results for clusterings with a high number of clusters. The
Fowlkes-Mallows FM index is defined as

FM =

√
TP

TP+ FP
· TP
TP+ FN

(2.8)

where TP denotes the number of true positives, and FP and FN provide the number of
false positives and negatives, respectively.

A way to confirm the validity and suitability of an index is to compare it against an
unrelated clustering [SMR08]. Therefore, I compared the ground truth against a random
clustering, while maintaining the structure of the clustering, that is, the number of
clusters and the number of elements per cluster. Compared against the ground truth,
this reveals a bad Fowlkes-Mallows index of 0.05. Since the results for the analyses lie
within the interval [0.231, 0.911], this indicates a high validity of the chosen index.

To identify parameters with a relevant influence on the result, I compute the Fowlkes-
Mallows index for each of the 803,682 clusterings against the ground truth. This provides

44 Chapter 2 Reconstruction

Autoaccept Threshold Diff-Lines Ratio Message-Diff Weight

0.6 0.7 0.8 0.9 1.0 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.78

0.79

0.80

0.81

0.82

0.65

0.70

0.75

0.80

0.85

0.70

0.75

0.80

Threshold

Fo
w
lk
es
-M

al
lo
w
sI
nd

ex

Figure 2.4.: Illustration of the influence of auto-accept threshold, diff-length ratio and the message-diff
weight (connecting lines in all figures are used to guide the eye).

a similarity score for clusterings for each combination of parameters. To draw conclu-
sions on the significance of a parameter, I selectively observe the distribution of the
Fowlkes-Mallows index for each parameter. Fig. 2.3 illustrates the Fowlkes-Mallows
index for different values of the filename threshold resp. the hunk header threshold. It
can be seen that the settings for tf and th have little influence on the results. Instead,
best results are achieved for the boundary setting 1 in both cases (I analyse the reason
for the behaviour Section 2.5). For the further analysis, I only regard the subset of results
with tf = 1 and th = 1 due to their lack of significance. This requires to consider 2,662
clusterings.

Fig. 2.4 shows the plot of the mean of the Fowlkes-Mallows index for auto-accept thresh-
old, diff-length ratio and message-diff weight. Having the filename and hunk header
threshold set to 1, the approach performs best with a auto-accept threshold of 0.82,
a diff-length ratio of 0.4 and a message-diff weight of 0.3. With this combination, it
achieves a Fowlkes-Mallows index of 0.911 on the selected time window.

To confirm the universal validity of those parameters for the whole project, I cross
checked the parameters with another mailing list: the linux-commits-tip mailing list.
Every patch that is committed to the Linux tip repository is automatically sent to the
linux-commits-tip mailing list [JAG13] by the tip-bot. In contrast to standard emails, they

2.4 Evaluation 45

50
%

80
%

90
%

95
%

99
%

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0 200 250 350 400 450 500 55013 46 82 138 314
Integration duration in days

Am
ou

nt
of

pa
tc
he

sb
ei
ng

ac
ce
pt
ed

w
ith

in
xd

ay
s

Figure 2.5.: Empirical distribution function of the integration duration of patches on the LKML.

contain the commit hash in the corresponding repository in their header. This allows
for simple cross-validation of the best parameter set. The list can be used to prove the
general functioning of the approach, as the analysis should lead to an exact match of all
patches.

Using a sample of 1,047 emails from linux-tip-commits ML compared to the linux-tip-
commits repository results in a Fowlkes-Mallows index of 0.988. Some minor mis-
matches are caused by very close, but still dissimilar patches that are erroneously
considered similar, and induced by technical corner cases where the diff for a patch
being sent to the mailing list produces different output as the diff in the repository (e.g.,
mode-changes of files or moved files). In sum, there were 1,086 TPs, 18 FPs, and 9 FNs.
Note that there are more TPs than actual emails, because some clusters correctly con-
tain more than one email or more than one commit; a correct cluster with n elements
contains

(
n
2

)
TPs. Once more, these numbers underline the high accuracy of PaStA.

2.4.2 Example: Duration of patch integration

Comparing patches is a computationally intensive task. The number of comparisons can
be reduced if potential comparison candidates are restricted to patches within a certain

46 Chapter 2 Reconstruction

time window, as less patches are considered for the eventual cost-intensive comparison.
PaStA already provides a set of qualitative analyses, such as the integration duration of
a patch: Given a patch in the repository, how long did integration take, from first appearance
on the mailing list until final integration to the repository?

From an analytical point of view, this question supports to reduce the computationally
intensive task of comparing patches. From a practical point of view, this question also
gives interesting qualitative insights on how long it typically takes for integrating a patch
into a project.

To determine the size of this window, I re-run the analysis on the whole LKML and
the whole repository with the determined optimal set of parameters. I define the time
interval between the date of the latest revision of a patch (i.e., email submission date) and
the date of integration in the repository (i.e., the commit date) as integration duration.

Fig. 2.5 shows the empirical distribution function of the integration duration of all
patches of the 99.9% quantile of all patches. Interestingly, within the outliers beyond
that quantile I found patches that took indeed five years for integration. 99% of all
patches were integrated within one year, 80% of all patches within 46 days, 50% of all
patches within two weeks.

2.4.3 Comparison to Other Approaches

In [Jia+14], Jiang and colleagues also present a method for mapping patches on mailing
lists to repositories. Their Plus-Minus-based approach assigns each tuple of changed
line and filename to a set of ids, where the id can either be a message ID or a commit
hash. They then search for patches that contain sufficient identical changes. A threshold
between [0, 1] determines the fraction of the number of identical changes that needs to
be exceeded if patches are considered similar.

I used their original implementation to evaluate it against the time window of the
aforementioned ground truth, and vary their threshold setting in the range [0, 1]. Fig. 2.6
shows the results of the analysis. The threshold has no significant impact on the accuracy
within the range ≈[0.25, 0.75]. The best Fowlkes-Mallows index of 0.743 that I could
reach with their method is observed at threshold 0.26.

2.4 Evaluation 47

0.650

0.675

0.700

0.725

0.00 0.25 0.50 0.75 1.00
Threshold

Fo
w
lk
es
-M

al
lo
w
si
nd

ex

Plus-minus-line-based approach

Figure 2.6.: Evaluation of the Plus-Minus-based approach: highest FM index at 0.26, while the threshold
only has little influence between [0.25, 0.74].

2.5 Discussion

I previously showed the high accuracy of PaStA’s method, and quantitatively compared
it with other existing methods. I will now turn the attention to interpreting the meaning
of the optimal set of tuneable parameters, further discuss other methods, and examine
the performance (and, thus, practical applicability) of the approach.

2.5.1 The Algorithm

In Section 2.4 I found that both, filename and hunk header threshold, produce best
results for the boundary value 1.00. A filename threshold of 1.00 implies that patches
on the list will not be associated with a commit in the repository if affected files were
renamed between submission and integration of the patch, and the hunk header thresh-
old of 1.00 disregards relocations of a hunk within a file. The rationale for these extreme
settings is that both, file moves and relocations within a file, do not occur frequently in
real-world development. It is unlikely that a patch hits this exact window. While a lower
threshold improves recall, it disproportionally decreases precision since more patches
are erroneously considered similar when relocations occur.

48 Chapter 2 Reconstruction

In contrast to filename and hunk header threshold, other parameters significantly
influence the results: auto accept threshold, diff-length ratio and message diff weight.
As expected, too strong or too weak thresholds lead to over- and underfitting. The diff-
length ratio of 0.4 is reasonable because it allows, for instance, an initial two-line patch
to expand into five-line patch in a future revision, but filters for strongly imbalanced
sizes of patches. It is, for instance, unlikely that a one-line patch will evolve into a 20-line
patch in a future revision. A message-diff weight of 0.3 underlines the importance to
consider both, commit message and diff, with a slight bias towards the code. It also
stresses that involving actual code for analyses is vital for such analyses.

2.5.2 Plus-Minus-based approach

While not explicitly mentioned in their paper, the authors of [Jia+14] chose a threshold of
0.5 for their algorithm, based on their experience and intuition[Ada18]. The evaluation
of the Plus-Minus-based approach shows evidence that this threshold is indeed within a
range where the algorithm performs best.

The authors determine the accuracy of their approach based on the F-Score, defined as
F = 2 · precision·recall

precision+recall . It requires knowledge of precision and recall. While calculating
precision is straightforward (i.e., counting the number of true and false positives), a
solid ground truth is required to determine the exact recall of an algorithm, as the
recall requires to know the number of false negatives. They argue that it is hard to
determine such a ground truth (a statement that I fully agree with), and therefore
employ the concept of “relative recall”. The relative recall incorporates results of the
checksum–based technique and the clone-detection–based technique. The accuracy of
these approaches is not known and therefore relative recall only forms an approximation
with unknown quality. An evaluationwith a ground truth leads tomore reliable results.

2.5.3 Performance

Performance is an important factor for real world practicability. In particular, a well-
performing implementation is required for the evaluation of the optimum parameter
set, as it requires to run several analyses. Therefore, PaStA massively parallelises steps
of the analysis.

The full analysis of the Linux kernel (v2.6.12 – v4.18 against the whole ML) with my
method requires 13 hours on a machine equipped with two Intel® Xeon® E5-2650 pro-
cessors (20 cores / 40 threads) using the optimal thresholds derived in Section 2.4. This

2.5 Discussion 49

includes run-once preparation steps like convertingmailing list data to a suitable format,
parsing mailing lists for patches or creating intermediate caches.

It was not possible to run the full analysis of the Linux kernel with the plus-minus-line–
based approach, because of limitations of their implementation.

Nonetheless, the plus-minus-line–based approach is considerably more performant
than my approach. For the one-month test set, the approach takes 80 seconds on the
same machine as mentioned before, and only consumes one single CPU core. PaStA
takes between two and eight minutes to analyse the same set, depending on selected
thresholds. The comparison of textual equivalence used by the plus-minus-line–based
technique is less computation-intensive than the use of Levenshtein string distances.

Yet, PaStA is applicable for real world use cases and its best Fowlkes-Mallows index is
22% higher than the best score achieved by the plus-minus-line–based approach.

2.6 Threats to Validity

2.6.1 Internal Validity

Other than a perfect gold standard, a manually created ground truth underlies some
uncertainties. The creator may be biased or misjudge decisions, and there is always a
certain degree of subjectivity. The creation of the ground truth (judging similarity of
patches) was carefully done by an experienced developer with domain-specific knowl-
edge and a track record of active participation in several open source communities,
including the Linux kernel, and I am confident that the ground truth contains negligible
faults.

2.6.2 External Validity

I focus on the Linux kernel for the evaluation, which has strict submission guidelines,
such as requiring detailed commit messages. Patches must be structured in a fine-
grained fashion and must only introduce one small change. Other projects established
different strategies, such as less-verbose commit messages or larger patches.

Because of this fact, the set of parameters that I found in the evaluation are therefore
thresholds that suit Linux, but are not necessarily applicable to other projects. As a

50 Chapter 2 Reconstruction

consequence, this demands to repeat the evaluation, when analysing other projects that
the Linux kernel, in order to determine its proper set of thresholds.

However, numerous other low-level systems that are object of my analyses adopted
the submission guidelines of the Linux kernel that are known as best practises in the
communities. The same set of parameters lead to high accuracy in other such projects
(e.g., QEMU, BusyBox, U-Boot, …).

2.6.3 Construct Validity

Working with mailing lists requires handling noisy data. Bird et al. [Bir+06] found that
1.3% of the Apache HTTP Server Developer mailing list contains malformed headers.

PaStA implements appropriate filters, and consequently uses a custom best-effort parser
adapted to handle these difficulties. Since authors may submit their patches in many
ways, finding all patches cannot be guaranteed, though. Based on the knowledge in the
ground truth, the amount of patches that are not captured is insignificant. Additionally,
the revision control system git that is widely used for Linux kernel development provides
tool support to prevents commonmistakes in email-based patch flows, which reduces
the number of unparseable emails. Following op. cit., I deem this threat minor.

2.7 Related Work

2.7.1 Reconstruction of Development Processes

A patch consists of an informal commit message that describes the changes of the patch
in natural language, and annotations of the modifications to files of a project. First and
foremost, patches modify source code, but also documentation, build system, tools and
any other artefacts of a project. A single patch may modify several files. Within the
context of a file, hunks are segments that describe changes to a certain area within a
file. Listing 2.1 illustrates the typical structure of patches on the ML (a, b) and in the
repository (c). The issue is to find similar patches to track patch evolution.

Jiang, Adams and German [JAG13] present a coarse-grained checksum-based technique
for mapping emails that contain patches to commits. After trimming whitespaces they
calculate MD5 hashes over chunks of the patch. Two patches are considered similar if
they have at least one checksum in common (i.e., share one equivalent hunk).

2.7 Related Work 51

In another work [Jia+14], the authors refine their technique and present further ap-
proaches: A plus-minus-line-based technique and a clone-detection-based technique.
The plus-minus-line–based technique weights the fraction of equivalent lines of two
patches. This includes insertions (+) and deletions (-). The clone-detection–based tech-
nique incorporates CCFinderX [BTH12], a code-clone detector. They evaluate their three
techniques, and conclude that the plus-minus-line–based technique is performing best.
This evaluation is based on the F-Score that depends on the precision and recall of the
actual algorithm. In contrast to measuring the precision, the F-Score requires a ground
truth for determining the recall. As a ground truth is hard to obtain, authors use the
concept of relative recall that provides a qualitative approximation.

2.7.2 Distinction from Code Clone Detection

Finding similar patches needs to be distinguished from detecting similar code. Code
Clone Detection (CCD) is a well-researched topic mainly driven by revealing code plagia-
rism [CJ12] or redundancy reduction [Bax+98]. The underlying problems of detecting
similar patches and detecting similar code are related, but differ in one decisive property:
code clone detection analyses a certain snapshot of the code, while detecting similar
patches requires analysing a diff, which comprises only fragments detached from the
code base. Additionally, a patch also contains an informal commit message that is not
considered by CCD.

Many CCD techniques use language-dependent lexical analysis and analyse similarities
of abstract syntax trees [Jia+07; Bax+98]. Since patches only provide differences between
syntactically incomplete fragments of code, and may also modify non-code artefacts,
CCD techniques are typically inapplicable when working with patches.

Another approach uses locality sensitive hash functions for quantifying code similar-
ity [Jia+07; Sæb+09]. Such hash functions produce similar output for similar input.
Arwin et al. proposed a language independent approach [AT06] that analyses interme-
diate code produced by the compiler. This is not applicable to my problem since the
aforementioned analysis of documentation, scripts, build-system artefacts etc. needs to
be independent of any language restrictions.

Bacchelli et al. [Bac+09; BLD11; BLR10] link emails to source code artefacts in a repository.
In contrast to PaStA, they focus on discussions and conversations instead of analysing
mails with patches. Naturally, informal conversations have a different structures than
patches. However, my approach of linking patches onmailing lists to repositories allows
for transitively linking follow-up discussions of a patch, since the Message-ID of the
initial patch remains in the “reference header” of responses.

52 Chapter 2 Reconstruction

2.8 Summary and Conclusion

I presented a method that is able to reliably link emails with patches to commits in
repositorieswith high accuracy. Additionally, I formalised themathematical background
of the problem and identified it as a clustering problem. Based on this, an elaborate
evaluation built upon a solid ground truth quantifies the high accuracy of my approach.
The ground truth and the PaStA framework can be used to evaluate the accuracy of
other approaches, and the fully published framework allows for independent (industrial)
evaluation required in certification efforts.

The evaluation verified that the presented approach performs better than existing work.
For Linux and the LKML, PaStA achieves a 22% larger Fowlkes-Mallows index of 0.911
than the best score achieved by the (previously best) plus-minus-line–based approach.

In the first chapter of this part, I presented the methodology of PaStA, a methodology
to reconstruct development processes of various OSS projects. These data build the
fundament for various further qualitative analyses on properties and characteristics of
OSS projects.

The next chapter focuses on the practical applications of the approach. I will focus on
the assessment non-formal OSS development processes. My methodology provides the
basis for such analyses, as it systematically makes the history of the process accessible.
Its accuracy makes it suitable for further qualitative software analyses.

2.8 Summary and Conclusion 53

Analysis 3
„Über den Gemeinspruch: Das mag in der Theorie

richtig sein, taugt aber nicht für die Praxis

— Immanuel Kant
1793

SHARE-ALT
This chapter shares material with the OpenSym ’16 paper “Observing Cus-
tom Software Modifications: A Quantitative Approach of Tracking the Evo-
lution of Patch Stacks” [RLM16] and the CCSW ’20 paper “The Sound of
Silence: Mining Security Vulnerabilities from Secret Integration Channels
in Open-Source Projects” [Ram+20].

3.1 Structure

In the previous chapter, I presented the methodology of PaStA, a methodology to recon-
struct the pre-integration history of OSS projects. In this chapter, I will use the approach
and apply it to real-world projects, in order to provide evidence on the (dys-)functioning
and performance of development processes. Analysis results can be used to support
safety-certification efforts, as they provide deep insights in the development process.

Without the loss of generality I will conduct analyses on the Linux kernel. I chose the
Linux kernel as test object for reference analysis for three reasons. First and foremost,
Linux is a building block of the architecture presented in Section 4.2. As mentioned in
Section 1.2.1, there is an increasing interest on Linux for being used in safety-critical
environments, which makes safety certifications of Linux mandatory. The following
analysis can be used as a model for such efforts. Secondly, the Linux kernel is one of the
world’s largest software development undertakings that uses more than 200 different
mailing lists that receive approximately one mail every 20 seconds. Conducting the
analyses on the Linux kernel stresses the scalability of the approach, and underlines
the suitability for being used in real-world scenarios. Finally, with slight variations, the
Linux Kernel Development Process (LKDP) is adapted by various OSS communities, such

55

as GCC, QEMU, U-Boot, LLVM, BusyBox, and many others. This allows for transferring
the approach to other projects.

Note that the sole analysis of development processes is not the enabling factor for safety-
certification, it is one component in a complex superior certification endeavour. For
the particular certification of a product, specific questions on the development process
need to be questioned. Those case-specific questions have to be carefully addressed.
This chapter shall exhibit the opportunities of quantitative software engineering tech-
niques, and underline their ability to provide profound answers on issues on processual
characteristics and dynamics in OSS projects. Given a formal definition of an issue, I
will show that it is possible to derive quantitative performance indicators that assist to
provide answers on a formal basis. Of course, concrete issues need to be defined by
assessors.

In the following analyses, the focus is on adherence of development processes. First and
foremost, I will give detailed overview of the LKDP in Section 3.2. I will then ask informal
questions on the adherence of the development process, and show how quantitative
indicators can be derived to answer these questions. In particular, I will present an
analysis that measures the adherence to development processes. As a consequence, this
analysis also uncovers violations of the development process, which includes unexpected
aspects of development processes. With my approach, it is possible to early uncover
violations of the development process, which includes intentional violations of regular
processes, such as processual exception for handling fixes for security vulnerabilities.
This endangers responsible disclosure processes that are implemented by many OSS
projects.

Extraction of Development Characteristics In Section 3.3, I will show how themethodology
can be used to extract key characteristics of the development process. These data can
be used to quantify the adherence to formally defined processes. I investigate dynamics
on mailing lists, and define and quantify two performance indicators in a time series:
the amount of patches that have been ignored on Linux kernel mailing lists, and how
the dynamics evolved over almost a decade. Secondly, I investigate the adherence to
development processes, by measuring the ratio of correctly integrated patches.

Violations of Development Processes Public development processes are a key characteris-
tic of open source projects. In Section 3.4, I systematically mine for violations of the
otherwise regular development process. Contrary to regular development activities,
fixes for security vulnerabilities, for example, are usually discussed privately among a
small group of trusted maintainers, and integrated without prior public involvement

56 Chapter 3 Analysis

This is supposed to prevent early disclosure, and cope with embargo and non-disclosure
agreement (NDA) rules. While regular development activities leave publicly available
traces, fixes for vulnerabilities that bypass the standard process do not.

Based on the methodology presented in Chapter 2, I present a data-mining based ap-
proach to detect code fragments that arise from such infringements of the standard
process. By systematically mapping public development artefacts to source code reposi-
tories, I can exclude regular process activities, and infer irregularities that stem from
non-public integration channels. For the Linux kernel, the most crucial component of
many systems, I apply my method to a period of seven months before the release of
Linux 5.4. I find 29 commits that address 12 vulnerabilities. For these vulnerabilities,
my approach provides a temporal advantage of 2 to 179 days to design exploits before
public disclosure takes place, and fixes are rolled out.

Established responsible disclosure approaches in open development processes are sup-
posed to limit premature visibility of security vulnerabilities. However, my approach
shows that, instead, they open additional possibilities to uncover such changes that
thwart the very premise. I conclude by discussing implications and partial countermea-
sures.

In the following, I will use the term PaStA interchangeably for both, the methodology
of reconstructing the development process, and the extension of the approach, that is,
the quantification of characteristics of a development process.

3.2 Linux Kernel Development Process

This section gives a brief overview of the LKDP. One peculiarity of the LKDP is the
large number of contributors (thousands per year) and participants, which lead to the
well-known hypothesised connection given above between the decreasing difficulty of
detecting bugs with an increasing number of reviewers. Since I abuse the principle
in Section 3.4 to detect patches that have seemingly not receive sufficient public attention,
it is pertinent to recapture key characteristics of the development process that are
relevant for my approach.

3.2.1 Core Characteristics

Development of the Linux kernel proceeds in two-phase cycles: New code and features
are merged during a two-week longmerge window, which is followed by a two-month

3.2 Linux Kernel Development Process 57

long stabilisation window [Lin20]. This leads to development cycles of approximately 2.5
months between two major releases. More than 10,000 patches are integrated in each
cycle into Linus Torvalds’ (the project owner’s) git tree, which is commonly called Linux
mainline. Before code changes (patches) are integrated into mainline, they must have
been discussed on a public mailing list [Kro16]. This is demanded by the submission
guidelines of Linux, and is intended to ascertain good code quality [MW09]. Submission
guidelines are part of the official LKDP.1

Similar to a commit in a repository, an email encapsulates a patch that contains a commit
message, an informal description of the changes, and a diff that specifies insertions
and deletions of code—relative to a specific code base. Typically, larger logical changes
are split into multiple small patches. This gives a patch series whose elements are tied
together by a cover letter. Cover letters give an informal, higher-level overview of the
series. Together with the proper patches, it is sent as a mail thread to maintainers and
the corresponding list(s) of the affected subsystem(s) of the project.

Everyone can join the discussion of patches as lists are usually unmoderated. Maintain-
ers who receive the patch and who are responsible2 for the area or subsystem that the
patch addresses eventually

(a) refuse the patch,

(b) ask for further refinement of the patch,

(c) pick up the patch and commit it to their maintainer tree.

Maintainer trees are staging points before code changes are finally integrated mainline.
It is not unusual that (b) is repeated over several iterations until the patch series is
deemed acceptable for merging.

Because of the project’s size and the massive number of emails and patches, the Linux
kernel currently utilises over 200 different mailing lists that are logically partitioned
by topic or subsystem. On average, an email is received by one of those lists every 20

seconds.

1Ref. https://www.kernel.org/doc/html/latest/process/
2I will later clarify how areas of responsibility are defined and determined

58 Chapter 3 Analysis

https://www.kernel.org/doc/html/latest/process/

3.2.2 Organigram and Areas of Responsibility

To get a patch integrated into mainline Linux, the developer that writes a patch for
Linux needs to determine the recipients of the patch. According to patch submission
guidelines of the Linux kernel,3 the patch should at least be sent to one mailing list:

You should also normally choose at least one mailing list to receive a copy of
your patch set. linux-kernel@vger.kernel.org functions as a list of last resort,
but the volume on that list has caused a number of developers to tune it out.
Look in the MAINTAINERS file for a subsystem-specific list; your patch will
probably get more attention there.

The abovementioned MAINTAINERS file allocates areas of responsibility (i.e., sections
of responsibility). Such a section maps portions of source code to maintainers and
mailing lists. Listing 3.1 exemplarily shows the entry of two sections in MAINTAINERS,
APPLETALK NETWORK LAYER and NETWORKING DRIVERS.

If a patch modifies any file inside drivers/net, the patch will be assigned to the NET-
WORKINGDRIVERS subsystem. Note that a patch can affectmultiple sections as once, as
it can touch multiple areas of responsibility at once. Furthermore, sections can overlap:
The file drivers/net/appletalk/ltpc.c will be assigned to both sections, APPLETALK and
NETWORKING. In sum, the MAINTAINERS of the Linux Kernel, as of v5.10, consists of
2,236 different sections.

The tool get_maintainers.pl supports developers to find recipients for their patch:
get_mainainters.pl automatically assigns a patch to one ormore of those sections and
proposes appropriate recipients of the patch. Note that the contents of MAINTAINERS,
sections and areas of responsibility evolves and changes over time: Sections are removed
or added, and maintainers change their area of responsibility. Additionally, sections
in MAINTAINERS contain a status that indicates whether the area is being actively
maintained or not.

1 APPLETALK NETWORK LAYER
2 L : netdev@vger . k e rne l . org
3 S : Odd f i x e s
4 F : d r i v e r s / net / app l e t a l k /
5 F : i n c l ude / l i n u x / a t a l k . h
6 [. . .]
7
8
9

10 [. . .]

3Ref. https://www.kernel.org/doc/html/v5.10/process/submitting-patches.html.

3.2 Linux Kernel Development Process 59

https://www.kernel.org/doc/html/v5.10/process/submitting-patches.html

11 NETWORKING DRIVERS
12 M: ” David S . M i l l e r ” <davem@davemloft . net >
13 M: Jakub K i c i n s k i <kuba@kernel . org >
14 L : netdev@vger . k e rne l . org
15 S : Ma inta ined
16 W: ht tp : / /www. l i nu x f ounda t i on . org / en / Net
17 Q : h t tp s : / / patchwork . ke rne l . org / p r o j e c t / netdevbpf / l i s t /
18 T : g i t g i t : / / g i t . k e rne l . org / pub / scm / l i n u x / ke rne l / g i t / netdev / net . g i t
19 F : Documentation / de v i c e t r e e / b ind ings / net /
20 F : d r i v e r s / connector /
21 F : d r i v e r s / net /
22 F : i n c l ude / l i n u x / i f _ *
23 [. . .]

Listing 3.1: The APPLETALK NETWORK LAYER and NETWORKING DRIVERS section in MAINTAINERS. M:
assigns maintainers, L: mailing lists. S: denotes the current state of the section.

Maintainers themselves are organised in a semi-formal hierarchy [Mau10]. During
a merge window, maintainers ask hierarchically higher-level maintainers to pull their
changes, which is possible in two ways: Either by picking up and integrating patch data
frommailing lists, or by pulling code from repositories. Once the top-level maintainer
Linus Torvalds pulls and publishes changes, they become part of Linux mainline.

With slight variations, many other projects (e.g., QEMU, U-Boot, or Xen) use either
the same or similar format to define the areas of responsibility. PaStA supports the
semantics and concepts of MAINTAINERS of those projects.

3.2.3 Lifecycle Management

The latest release of Linux is called the stable tree, and is actively supported with bug fixes
until the next mainline release is cut, and becomes the new stable tree. Additionally,
the Linux kernel community supports several versions of the kernel in parallel [Kro07]
that are referred to as Long Term Support (LTS) versions. They are based on selected
stable trees, and receive official support for up to six years. Fig. 3.1 illustrates the parallel
development of mainline Linux and the maintenance of LTS versions.

Linux distributions and vendors usually choose LTS versions as the basis of their kernel
(which may additionally contain a substantial amount of added drivers, domain-specific
features, and many other additional elements), since they provide a stable and reliable
base that will not be subjected to invasive changes (e.g., API changes) during their
lifetime. New features are only accepted mainline. Stable and LTS trees may only
receive stabilisation patches, bug fixes, or fixes for vulnerabilities.

60 Chapter 3 Analysis

20
19

20
20

Li
nu

x
m
ai
nl
in
e

v4.1
8

v4.1
9

v4.2
0

v5.0

v5.1

v5.2

v5.3

v5.4

v5.5

O
ffi
ci
al
Li
nu

xS
ta
bl
e

v4
.1
9.
x

v4.1
9

v4.1
9.16

v4.1
9.28

v4.1
9.37

v4.1
9.58

v4.1
9.67

v4.1
9.84

v4.1
9.98

De
bi
an

10
v4
.1
9.
y-
di
st
ro

v4
.19

v4
.19
.16
-1

v4
.19
.28
-1

v4
.19
.37
-3

v4
.19
.37
-5+
de
b1
0u
1

v4
.19
.67
-1

v4
.19
.67
-2+
de
b1
0u
2

v4
.19
.98
-1

Ti
m
e

fo
rk
s

fo
rk
s

Vu
ln
er
ab

ili
ty

2
Vu

ln
er
ab

ili
ty

1

20
19

20
20

Li
nu

x
m
ai
nl
in
e

v4.1
8

v4.1
9

v4.2
0

v5.0

v5.1

v5.2

v5.3

v5.4

v5.5

O
ffi
ci
al
Li
nu

xS
ta
bl
e

v4
.1
9.
x

v4.1
9

v4.1
9.16

v4.1
9.28

v4.1
9.37

v4.1
9.58

v4.1
9.67

v4.1
9.84

v4.1
9.98

De
bi
an

10
v4
.1
9.
y-
di
st
ro

v4
.19

v4
.19
.16
-1

v4
.19
.28
-1

v4
.19
.37
-3

v4
.19
.37
-5+
de
b1
0u
1v4

.19
.67
-1

v4
.19
.67
-2+
de
b1
0u
2

v4
.19
.98
-1

Ti
m
e

fo
rk
s

fo
rk
s

Vu
ln
er
ab

ili
ty

2
Vu

ln
er
ab

ili
ty

1

Fi
gu

re
3.
1.
:L

in
ux

de
ve
lo
pm

en
tt
im

el
in
e:

M
ai
nl
in
e,
st
ab

le
tr
ee

sa
nd

di
st
rib

ut
io
n
tr
ee

sa
re

su
pp

or
te
d
in

pa
ra
lle

l.
Ty
pi
ca
lly
,f
ix
es

fo
rv

ul
ne

ra
bi
lit
ie
sa

re
fir
st

fix
ed

in
m
ai
nl
in
e
(c
f.
Vu

ln
er
ab

ili
ty

1)
an

d
on

a
st
ab

le
tr
ee
,b

ef
or
e
th
ey

ar
e
po

rt
ed

ba
ck

by
di
st
rib

ut
io
ns
.I
n
ra
re

ca
se
s(
cf.

Vu
ln
er
ab

ili
ty

2)
,p
at
ch

es
ap

pe
ar

in
di
st
rib

ut
io
ns

be
fo
re

th
ey

ar
e
pu

bl
is
he

d
in

m
ai
nl
in
e.

3.2 Linux Kernel Development Process 61

In case patches to LTS versions are also relevant for mainline, they must be, by the
upstream first convention, integrated in mainline before they are ported back to stable
releases.4 After their release, distributions pick patches from stable versions and apply
them to their own kernel repository.

From a temporal perspective, the typical pathway of a bug fix is mainline→stable→dis-
tribution, while exceptions apply.

3.2.4 Exceptional Vulnerability Handling

The aforementioned public review and integration process allows for an exception when
fixes for security vulnerabilities must be handled. The Linux kernel is a key software
component of a large class of machines from embedded industrial control appliances to
cloud computing servers. Consequently, the Linux kernel community has established
standard procedures for responsible disclosure [CW02; Fre+10].

Linux submission guidelines encourage developers to report exploitable security bugs
to the non-public security teammailing list security@kernel.org: “For severe bugs, a
short embargo may be considered to allow distributors to get the patch out to users; in
such cases, obviously, the patch should not be sent to any public lists.” [The20]

Similar to the regular public development process, patches for vulnerabilities are itera-
tively discussed, reviewed and refined – but all related conversations take either place in
private email conversations or on closed lists. Once participants agree on a fix [Kro20],
or after embargoes are expired, themajority of fixes follow the same procedures as bugs:
Patches for mainline and affected stable versions are published at the same time, before
they are integrated into distribution repositories. Fig. 3.1 (Vulnerability 1) illustrates
the temporal process of a typical vulnerability. There is a second type of coordinated
disclosure for severe vulnerabilities that I discuss in Section 3.5.

3.2.5 Formalisation

LetM be again the set of patches on mailing lists and C be the set of commits in the
repository. Let further U be universe of patches U =M∪ C. The PaStA approach turns
assigning patches in mails to commits in repositories to a problem in graph theory: The
universe U forms the vertices of an undirected and weighted graphG = (U , E).

4Ref. https://www.kernel.org/doc/html/v5.10/process/stable-kernel-rules.html

62 Chapter 3 Analysis

security@kernel.org
https://www.kernel.org/doc/html/v5.10/process/stable-kernel-rules.html

0.91

0.86

0.96

0.88
0.92

0.92

0.90

0.81
0.89

0.94

0.80

0.94

0.83
0.97

0.94
0.87

0.19

0.58

0.42

0.61

0.43

0.63

0.65

0.19

0.51

0.69

0.45

0.46

α

β

γ

commit email

Figure 3.2.: Creating clusters of similar patches. Patches that exceed the threshold t = 0.8 form sub-
graphs of similar patches. Cluster α: contains patches onmailing lists as well as commits,
cluster β only contains patches onmailing lists. Cluster γ is notmapped to anymail artefact
and a potential off-list patch.

The graph G is created as explained in Section 2.3 and used to derive an undirected
and unweighted subgraph G′ = (U , E′) that only contains edges exceeding a certain
threshold ts for the edge weight. G′ consists of connected components that divide U into
partitions of similar patches, that is, equivalence classes. I identify those equivalence
classes as∼S:

[x]S = {y ∈ U | x G′ y}, (3.1)

where G′ denotes reachability. Note that |[x]S | > 0. Figure 3.2 illustrates the cre-
ation of clusters of similar patches. Given G′, three different types of clusters can be
distinguished:

α Integrated Patches: ∃x1, x2 ∈ [x]S : x1 ∈M∧ x2 ∈ C
This category describes the finished integration process, as members of the equiv-
alence class can be found on both: the mailing list and the repository. Again,
[x]S ∩M describes several revisions of the patch, [x]S ∩ C denotes the assigned
commits in the repository.

Note that several commits in the repositorymay be assigned: While backports also
match to mainline commit, there may even been multiple mainline commits, as a
patch can be picked up by multiple maintainers and appear as multiple commits.

β Unintegrated Patches: [x]S ⊂M
All members of this equivalence class can only be found onmailing lists. Members
are, for example, different revisions of the same patch.

3.2 Linux Kernel Development Process 63

No commit in repositories can be found in this category. This means that the patch
has either not been integrated yet (as the discussion is, for example, still ongoing),
or, that the patch has been rejected and is not object to integration.

γ Off-list Patches: [x]S ⊂ C
No public development artefact can be assigned to the commit(s) in [x]S. Besides
false positives results of the heuristic, this category contains commits that arise
from non-public integration channels.

The automatic detection of patches in group γ offer the possibility to identify commits
that come from secret integration channels. Those commits will be subject of my
analysis in Section 3.4.2.

3.3 Extraction of Development Characteristics

In this section, I ask two question that examine processual characteristics of the current
LKDP on a quantitative basis:

1. What amount of patches is ignored on mailing lists?

2. Were patches integrated in conformance with development process guidelines?

The first question 1. specifically examines type β patches that were never integrated.
Among these patches, the question is which portion has never been addressed by review-
ers or maintainers. Hence, it can be used as a proxy variable to draw conclusions the
scalability of the process, and the utilisation of maintainers. By using PaStA’s method-
ology, I can automatically filter such patches and investigate the corresponding email
thread.

The second question 2. addresses patches of type α that have been integrated. Again,
PaStA can automatically filter those patches. I will define formal criteria that allow
for quantifying conform integration, according to development process guidelines. The
amount of correctly resp. incorrectly integrated patches gives an overview of the overall
adherence to self-imposed development processes.

Due to their exceptional role, patches of type γ will be examined in Section 3.4.

With development process, I refer to the LKDP process as it was described in Section 3.2.
Linux, as well as other projects, is separated in different areas of responsibility. Those
areas are the foundation of this analysis, as they allow for verifying if integrators (i.e.
maintainers) of patches are effectively responsible for the integration.

64 Chapter 3 Analysis

I find both, a decreasing amount of ignored patches over time, as well as an decreasing
amount of unconformingly integrated patches. I find that in the time window of the
analysis (2011-05-01–2021-02-01), 26% of all patches were not integrated according to
those sections of responsibility.

3.3.1 Ignored Patches

To answer the first question “What amount of patches is ignored on mailing lists?” requires
a clear definition of the term ignored patch. I define a patch as ignored, if the following
conditions are met:

1. The patch was sent to a public mailing list.

2. The mail with the patch received no responses from entities (i.e., humans or bots)
other than the original author.

3. The patch was not integrated in the official repository.

4. All related patches5 meet the abovementioned conditions.

While the first criteria 1. might sound straight forward, it is noteworthy that the Linux
kernel community receives patches on over 200mailing lists (Ref. Section 3.2). Not all
of those MLs are exclusively used for patches for the Linux kernel project; some lists
are mixed-use. They are, for example, used for receiving patches for userland tools
(e.g., tools for filesystems). Hence, PaStA filters those patches, by applying a heuristic:
An email is a patch for Linux, if it patches files within the directory structure of the
project.

Furthermore, I only want to respect patches that were sent by particular entities (i.e.,
humans or bots). In order to select such patches, PaStA filters for patches that were
sent by bots. The Linux kernel community uses several bots that are, for example,
used to automatically send patches that are selected for backports or bots that resend
patches that were picked up by maintainers for integration. PaStA detects those bots by
keywords in the email body (e.g., Deet-doot-dot, I am a bot.), special email-headers (e.g.,
X-Stable:) and known mail addresses (e.g., pr-tracker-bot@kernel.org).

Next, PaStA filters for development process-related emails with patches, such as pull
requests or automated reports that contain patches or patches that are proposed for
stable review.6 Those emails are detected by searching for keywords in the subject or
5That is, other revisions of the patch in other mail threads.
6That is, patches that shall be ported back to older kernel versions.

3.3 Extraction of Development Characteristics 65

body of the mail. For example, pull requests contain the keyword [GIT PULL] in their
subject.

Finally, PaStA excludes patches that were sent in reply to7 a previous patch. Developers
often answer with proposals of alternative approaches of patches in replies. For the
analysis, only the first patch(es) of an email thread are of interest. Therefore, a patch
must fulfil one of the following conditions:

(a) The email that contains the patch must be the root of the email thread.

(b) The email that contains the patch must be the child of the root, and the root must
not contain a patch.

The first criterion (a)matches for regular single patches. The second criterion (b) covers
patch series. As explained in Section 3.2, patch series consist of a cover letter, an informal
email that describes the patch series, and one or more patches, that are sent in reply to
the cover letter.

Table 3.1.: Ratio of ignored patches per year.

Year Ratio of ignored patches

2011 3.78%
2012 3.21%
2013 2.65%
2014 2.35%
2015 2.06%
2016 1.84%
2017 2.03%
2018 1.88%
2019 1.80%
2020 1.73%

Average 2.14%

For the time window of the following analy-
sis, I chose 2011-07-21 – 2020-12-31, which cov-
ers almost a decade of development between
the corresponding kernel versions v2.6.39 and
v5.13-rc3. In that timewindow, I find 11,088,826
mails on 237 MLs. Frequently, mails are sent
to multiple lists at once. After filtering for
duplicates, I identify 6,609,392 unique emails.
Within those unique emails, 2,499,510 mails
contain patches (a ratio of 37.8%).

Table 3.2 shows the composition of all patches
within the time window of interest. A fine gran-
ular illustration of the composition of patches
on mailing lists of the Linux kernel can be
found in Fig. 3.3. The graph also visualises dy-
namics in development cycles of the project: at
every release of a new kernel version, I observe an increase of patches being sent to the
lists. These are the patches that are sent during the two-week merge window (Ref. Sec-
tion 3.2). After the merge window, I observe a decrease of incoming patches per week,
the number of patches per week being sent to the lists is at a local minimum before the
release of the next version.
7Email headers contain the necessary information.

66 Chapter 3 Analysis

Table 3.2.: Composition of all unique patches on all mailing lists in the time window of the analysis.

Type Absolute amount Relative amount

Regular Patch 1,417,081 56.7%
Not Linux 414,997 16.6%
Stable review 300,137 12.0%
Not first 164,335 6.6%
Process-related 103,061 4.1%
Bot 96,076 3.8%
Linux-next 3,823 0.2%

Σ 2,499,510 100%

It is noteworthy that a significant decrease of patches being sent to mailing lists can be
observed at the end of every year, which obviously correlates with Christmas holidays.
Note that only every second release is listed in the secondary x-axis for reasons of
clarity.

For addressing the second criterion 2. (The mail with the patch received no responses
from entities other than the original author), I reconstruct the thread of the patch (across
all available lists) by analysing the headers of the email. If the email was sent with a
different identity than the original author, it is considered not ignored.

The third and fourth criterion 3. and 4. (The patch was not integrated in the official
repository and all related patchesmeet the abovementioned conditions) are verified by PaStA’s
methodology explained in Section 2.3. Therefore, I establish patch clusters for all emails
in the time window and try to map them against 709,909 commits in the repository. Of
course, all emails in type α clusters (i.e., patches that are mapped to a commit in the
repository) are considered not ignored. Obviously, off-list patches (type γ) can not be
judged, as they are not observed. What remains are type β patches, patches that are not
integrated. If any patch in a type β cluster received an answer by an email address other
than the original author, patches of the cluster are not ignored. The cluster is counted
as ignored, if no thread of all patches received an foreign answer. This strict criteria
results in a lower bound of ignored patches.

Table 3.1 shows the accumulative fraction of ignored patches for all mailing lists per
year. While the average amount of regular patches per week tripled from 2012 until
2021 (≈1,300 patches per week in 2012 vs. ≈4,000 patches per week at the end of 2020,
cf. regular patches in Fig. 3.3 and total patches in Fig. 3.4), the absolute amount of ignored
patches stayed at a almost constant level (cf. the red graph in Fig. 3.4).

Between 2012 and 2019, the amount of ignored patches almost halved in size. Note that
I do not consider the fraction of ignored patches in 2020, as there can be patches that

3.3 Extraction of Development Characteristics 67

Overall
v3
.0

v3
.2

v3
.4

v3
.6

v3
.8

v3
.1
0

v3
.1
2

v3
.1
4

v3
.1
6

v3
.1
8

v4
.0

v4
.2

v4
.4

v4
.6

v4
.8

v4
.1
0

v4
.1
2

v4
.1
4

v4
.1
6

v4
.1
8

v4
.1
9

v5
.0

v5
.2

v5
.4

v5
.6

v5
.8

v5
.1
0

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
0

2500

5000

7500

10000

Linux Releases

Date

Nu
m
be

ro
fp

at
ch

es
pe

rw
ee
k

not-project Other Regular Patch Sum

Figure 3.3.: Composition of type of patches on the 227 Linux kernel mailing lists. The type Other ac-
cumulates bots, process-related, linux-next, and not-first patches. Solid lines denote the
smoothed conditional mean.

were classified as ignored, while they just have not yet been addressed at the time of
writing this thesis. This argument is underlined by the integration duration in days as it
is shown in Fig. 2.5. The 99%-quantile of patches is integrated within 314 days, which
overlaps with the time window of the analysis. A fine-granular ratio of ignored patches
on a weekly basis can be found in Fig. 3.5.

These plots give an overall overview of the amount of ignored patches on all MLs of the
Linux kernel. However, as mentioned before, the Linux kernel community incorpo-
rate more than 200 different mailing lists. Different mailing lists are used for different
topics of the kernel. Different subsystems have different communities that behave differ-
ently. Faceting the graph by mailing lists gives a better overview of per-list behaviour.
This allows, for example, to identify hot spots of ignored patches. Exemplarily, Fig. 3.6
and Fig. 3.7 illustrate the dynamics of ignored patches on the top four lists with highest
patch traffic: the main Linux Kernel Mailing List LKML, Network Development (netdev),
hardware component description (devicetree), which is closely related to the ARM port
of Linux (linux-arm-kernel).

68 Chapter 3 Analysis

Overall

v3
.0

v3
.2

v3
.4

v3
.6

v3
.8

v3
.1
0

v3
.1
2

v3
.1
4

v3
.1
6

v3
.1
8

v4
.0

v4
.2

v4
.4

v4
.6

v4
.8

v4
.1
0

v4
.1
2

v4
.1
4

v4
.1
6

v4
.1
8

v4
.1
9

v5
.0

v5
.2

v5
.4

v5
.6

v5
.8

v5
.1
0

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
10

100
250
500

1000

2000

3000
4000
5000

Linux Releases

Date

Nu
m
be

ro
fp

at
ch

es
pe

rw
ee
k

total ignored

Figure 3.4.: Regular and ignored patches between v3.0 and v5.10. The green graph denotes the total
amount of regular patches, the red line denotes the amount of ignored patches. Note the
square root scale for the guidance of the eye. Solid lines denote the smoothed conditional
mean.

Overall

v3
.0

v3
.2

v3
.4

v3
.6

v3
.8

v3
.1
0

v3
.1
2

v3
.1
4

v3
.1
6

v3
.1
8

v4
.0

v4
.2

v4
.4

v4
.6

v4
.8

v4
.1
0

v4
.1
2

v4
.1
4

v4
.1
6

v4
.1
8

v4
.1
9

v5
.0

v5
.2

v5
.4

v5
.6

v5
.8

v5
.1
0

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

2%

4%

6%

Linux Releases

Date

Ra
tio

of
ig
no

re
d
pa

tc
he

s

Figure 3.5.: Ratio of ignored patches per week between v3.0 and v5.10. The violet curve denotes the
smoothed conditional mean, the green curve fits a linear model.

3.3 Extraction of Development Characteristics 69

linux-kernel@
vger.kernel.org

netdev@
vger.kernel.org

devicetree@
vger.kernel.org

linux-arm
-kernel@

lists.infradead.org

v3.0
v3.2
v3.4
v3.6
v3.8
v3.10
v3.12
v3.14
v3.16
v3.18
v4.0
v4.2
v4.4
v4.6
v4.8
v4.10
v4.12
v4.14
v4.16
v4.18v4.19
v5.0
v5.2
v5.4
v5.6
v5.8
v5.10

v3.0
v3.2
v3.4
v3.6
v3.8
v3.10
v3.12
v3.14
v3.16
v3.18
v4.0
v4.2
v4.4
v4.6
v4.8
v4.10
v4.12
v4.14
v4.16
v4.18v4.19
v5.0
v5.2
v5.4
v5.6
v5.8
v5.10

v3.0
v3.2
v3.4
v3.6
v3.8
v3.10
v3.12
v3.14
v3.16
v3.18
v4.0
v4.2
v4.4
v4.6
v4.8
v4.10
v4.12
v4.14
v4.16
v4.18v4.19
v5.0
v5.2
v5.4
v5.6
v5.8
v5.10

v3.0
v3.2
v3.4
v3.6
v3.8
v3.10
v3.12
v3.14
v3.16
v3.18
v4.0
v4.2
v4.4
v4.6
v4.8
v4.10
v4.12
v4.14
v4.16
v4.18v4.19
v5.0
v5.2
v5.4
v5.6
v5.8
v5.10

2012
2013

2014
2015

2016
2017

2018
2019

2020
2021

2012
2013

2014
2015

2016
2017

2018
2019

2020
2021

2012
2013

2014
2015

2016
2017

2018
2019

2020
2021

2012
2013

2014
2015

2016
2017

2018
2019

2020
2021

10

100
250
500

100010

100
250

500

1000

10

100
250

50010
100
250
500

1000

2000
3000

LinuxReleases

Date

Number of patches per week

total
ignored

Figure
3.6.:Regularand

ignored
patchesbetw

een
v3.0

and
v5.10

on
the

top
fourhigh

patch
trafficlists.

70 Chapter 3 Analysis

lin
ux
-k
er
ne

l@
vg
er
.k
er
ne

l.o
rg

ne
td
ev
@
vg
er
.k
er
ne

l.o
rg

de
vi
ce
tr
ee

@
vg
er
.k
er
ne

l.o
rg

lin
ux
-a
rm

-k
er
ne

l@
lis
ts
.in

fra
de

ad
.o
rg

v3.0
v3.2
v3.4
v3.6
v3.8
v3.10
v3.12
v3.14
v3.16
v3.18
v4.0
v4.2
v4.4
v4.6
v4.8
v4.10
v4.12
v4.14
v4.16
v4.18 v4.19
v5.0
v5.2
v5.4
v5.6
v5.8
v5.10

v3.0
v3.2
v3.4
v3.6
v3.8
v3.10
v3.12
v3.14
v3.16
v3.18
v4.0
v4.2
v4.4
v4.6
v4.8
v4.10
v4.12
v4.14
v4.16
v4.18 v4.19
v5.0
v5.2
v5.4
v5.6
v5.8
v5.10

v3.0
v3.2
v3.4
v3.6
v3.8
v3.10
v3.12
v3.14
v3.16
v3.18
v4.0
v4.2
v4.4
v4.6
v4.8
v4.10
v4.12
v4.14
v4.16
v4.18 v4.19
v5.0
v5.2
v5.4
v5.6
v5.8
v5.10

v3.0
v3.2
v3.4
v3.6
v3.8
v3.10
v3.12
v3.14
v3.16
v3.18
v4.0
v4.2
v4.4
v4.6
v4.8
v4.10
v4.12
v4.14
v4.16
v4.18 v4.19
v5.0
v5.2
v5.4
v5.6
v5.8
v5.10

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

0%2%5%8% 0%5%10
%

0%10
%

20
%

30
%

40
% 0%2%4%6%8%

Li
nu

xR
el
ea
se
s

Da
te

Ratioofignoredpatches

Fi
gu

re
3.
7.
:R

at
io
of

ig
no

re
d
pa

tc
he

sb
et
w
ee
n
v3
.0
an

d
v5
.1
0
on

th
e
to
p
fo
ur

hi
gh

pa
tc
h
tr
aff

ic
lis
ts
.

3.3 Extraction of Development Characteristics 71

3.3.2 Conform Integration of Patches

To answer the second question (Were patches integrated in conformancewith the development
process guidelines?), I first define the term conformally integrated patch.

With respect to the core characteristics of the LKDP as defined in Section 3.2, I further
define a patch as correctly integrated, if the patch was integrated (i.e., committed) by a
maintainer that is, at the time of the integration of the patch, responsible for at least
one section that is affected by the patch.

For the following analysis, I use the same time frame as mentioned in Section 3.3.1. For
each regular patch for the Linux kernel that was sent to a list and written by a human,
I first identify if the patch was integrated, otherwise it is counted as not integrated. If
the patch was integrated, I then verify if the integrator (i.e., committer) of the patch
is responsible for the area of patch, according to the definition in the MAINTAINERS
file at the time of integration. Therefore, PaStA reimplements get_maintainers.pl, as
the original implementation is unsuitable for massive batch processing of millions of
patches.

Figure 3.8 shows the fraction of correctly, incorrectly, and unintegrated patches per
week, fitted with a smoothed conditional mean. As mentioned in Section 3.3.1, an
increasing amount of unintegrated patches at the end of the analysis can be observed.
This can be explained by a high amount of patches, that have not yet been integrated at
the time of the analysis. Nevertheless, across all lists, I can observe an almost constant
fraction of unintegrated patches between 2012 and 2019, while amount of correctly
integrated patches slightly increases.

Analogously to the previous analysis of ignored patches, I facet the analysis by mailing
list. Figure 3.9 shows the fraction of unintegrated an (in-)correctly integrated patches
across the top 4 high patch traffic list. The plot discloses the probability if a patch
was integrated correctly, if it was initially sent to a specific ML. Across all top four
high-volume patch traffic lists, I observe an increasing amount of correctly integrated
patches.

The results of this analysis can be interpreted as an increasing awareness of the im-
portance to the adherence to development processes. Projects at the size of the Linux
kernel require clearly defined development processes: results show, that the amount of
correctly integrated patches increases over time, while the absolute amount of patches
that is sent to mailing lists increases well. The scalability of the project accompanied
by the required maintenance effort of maintainers is enabled by the conformance with
development guidelines.

3.3 Extraction of Development Characteristics 73

Overall

v3
.0

v3
.2

v3
.4

v3
.6

v3
.8

v3
.1
0

v3
.1
2

v3
.1
4

v3
.1
6

v3
.1
8

v4
.0

v4
.2

v4
.4

v4
.6

v4
.8

v4
.1
0

v4
.1
2

v4
.1
4

v4
.1
6

v4
.1
8

v4
.1
9

v5
.0

v5
.2

v5
.4

v5
.6

v5
.8

v5
.1
0

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

0.2

0.4

0.6

Linux Releases

Date

Fr
ac
tio

n
of

in
te
gr
at
io
n
pe

rw
ee
k

Correct Incorrect Not Integrated

Figure 3.8.: All mailing lists: Fraction of (in-)correctly and unintegrated patches.

For safety certifications efforts, these data can be used to quantify the robustness of the
development process, to identify hot spots of process violations, or to derive qualitative
metrics on the development process.

74 Chapter 3 Analysis

lin
ux
-k
er
ne

l@
vg
er
.k
er
ne

l.o
rg

ne
td
ev
@
vg
er
.k
er
ne

l.o
rg

de
vi
ce
tr
ee

@
vg
er
.k
er
ne

l.o
rg

lin
ux
-a
rm

-k
er
ne

l@
lis
ts
.in

fra
de

ad
.o
rg

v3.0
v3.2
v3.4
v3.6
v3.8
v3.10
v3.12
v3.14
v3.16
v3.18
v4.0
v4.2
v4.4
v4.6
v4.8
v4.10
v4.12
v4.14
v4.16
v4.18 v4.19
v5.0
v5.2
v5.4
v5.6
v5.8
v5.10

v3.0
v3.2
v3.4
v3.6
v3.8
v3.10
v3.12
v3.14
v3.16
v3.18
v4.0
v4.2
v4.4
v4.6
v4.8
v4.10
v4.12
v4.14
v4.16
v4.18 v4.19
v5.0
v5.2
v5.4
v5.6
v5.8
v5.10

v3.0
v3.2
v3.4
v3.6
v3.8
v3.10
v3.12
v3.14
v3.16
v3.18
v4.0
v4.2
v4.4
v4.6
v4.8
v4.10
v4.12
v4.14
v4.16
v4.18 v4.19
v5.0
v5.2
v5.4
v5.6
v5.8
v5.10

v3.0
v3.2
v3.4
v3.6
v3.8
v3.10
v3.12
v3.14
v3.16
v3.18
v4.0
v4.2
v4.4
v4.6
v4.8
v4.10
v4.12
v4.14
v4.16
v4.18 v4.19
v5.0
v5.2
v5.4
v5.6
v5.8
v5.10

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

0.
2

0.
3

0.
4

0.
5

0.
6

0.
00

0.
25

0.
50

0.
75

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
2

0.
4

0.
6

Li
nu

xR
el
ea
se
s

Da
te

Fractionofintegrationperweek

Co
rr
ec
t

In
co
rr
ec
t

No
tI
nt
eg
ra
te
d

Fi
gu

re
3.
9.
:T
op

fo
ur

hi
gh

-v
ol
um

e
m
ai
lin

g
lis
ts
:F
ra
ct
io
n
of

(in
-)c

or
re
ct
ly
an

d
un

in
te
gr
at
ed

pa
tc
he

s.

3.3 Extraction of Development Characteristics 75

3.4 Violation of Development Processes„Given enough eyeballs, all bugs are shallow

— Eric S. Raymond
Linus’ law [Ray99]

In the last chapter, I focused on examining characteristics of patches and commits that
were integrated resp. not integrated, that is, patches and commits in categories α and β.
What remains are patches of type γ, patches that can be found in the repository, but
never have been seen a publicly accessible resource before integration.

On 14 August 2018, a series of patches was integrated in Linux to provide mitigations
for the Level 1 Terminal Fault (L1TF) [Van+18; Wei+18] vulnerability8 – a speculative
execution attack with severe consequences that enable large scale data leakage across
virtual machines on Intel-based cloud appliances. While associated Common Vulner-
abilities and Exposures (CVE) entries were already filed in December 2017 [CVE17],
the vulnerability was embargoed until 14 August 2018 [Int18c] – the same day of the
disclosure and integration of the critical patches for Linux. Unlike ordinary patches,
these patches were—for obvious reasons—not discussed and developed on one of Linux’s
public communication channels (i.e., MLs) beforehand.

However, the fact that a patch was not publicly discussed betrays it: I will show that it
is possible to detect such patches as soon as they enter a public repository. This gives
attackers valuable information advantage to design exploits. For the aforementioned
attack, it took another five days until the patches were integrated and rolled out by
Debian 9,9 a popular and wide-spread Linux distribution.

By identifying commits of type γ, it us possible to uncover commits from non-public
secret integration channels with high probability using the PaStA methodology. It is
possible to systematically obtain off-list patches: Code changes that were developed
outside the official public lists. Besides fixes for security vulnerabilities, I also find that
there exist systematic channels to inject code into the Linux kernel while bypassing
public discussion.

In addition to the possibility to quantify and detect violations of the development process,
the PaStA methodology provides two advantages for malicious attackers:

(a) it significantly reduces search efforts for fixes of security vulnerabilities, compared
to fully manual investigation, and

8See Linux commit 958f338e96.
9See the announcement of Debian kernel 4.9.110-3+deb9u3.

3.4 Violation of Development Processes 77

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=958f338e96f874a0d29442396d6adf9c1e17aa2d
https://lists.debian.org/debian-security-announce/2018/msg00208.html
https://salsa.debian.org/kernel-team/linux/commits/debian/4.9.110-3+deb9u3

(b) it provides temporal advantage for the design of attacks.

I will show that it is possibly to systematically detect development process infringements
in OSS projects that works as soon as commits arrive in repositories. By analysing
type γ commits, I categorise different types of secret integration channels of the Linux
kernel, such as bypass of development processes or non-publicly discussed fixes for security
vulnerabilities.

3.4.1 Secret Integration Channels

The openness of the development processes is a key aspect of any OSS project: Almost all
development activities happen in public. Since development artefacts (i.e., discussions
or patch data on publicmailing lists) are observable, this allows for analysing the process
in detail.

However, especially the development of fixes for critical security vulnerabilities inten-
tionally happens behind closed scenes [The20]. After their disclosure, fixes silently
appear as commits in the repository. Nonetheless, those commits can not be assigned
to any prior artefact that relates to its public pre-integration history. Unless the vulnera-
bility is explicitly announced or attracts medial attention, I disprove the common belief
that patches typically drown in the noise of other commits in the repository.

Nevertheless, a full coverage of all public available development resources allows for sys-
tematically excluding regular development noise in order to separate it from irregularities:
I mine for commits in repositories that come from secret integration channels—and
detect them just-in-time to design exploits for vulnerabilities. For the Linux kernel, I do
have full coverage of all MLs. Figure 3.10 illustrates the chase for missing links: I deduce
that commits that can not be assigned to publicly observable artefacts must arise from
secret integration channels.

A rapidly changing code base, size and complexity inherently results in software defects
that can lead to severe software vulnerabilities. In 2019, 170 CVE entries were filed
for all different versions and flavours of the Linux kernel, and many more potential
security vulnerabilities have been fixed without CVE analysis and assignment [Cor19].
Unavoidably, the kernel community has processes on managing critical vulnerabilities.

In contrast to regular development activities, vulnerabilities shall be reported to and
discussed onprivatemailing lists [The20]. The rationale behindprivate discussions is the
responsible disclosure vulnerability disclosure model: Software producers get the chance
to provide fixes for vulnerabilities before they are publicly disclosed [CCR04]. Therefore,

78 Chapter 3 Analysis

Publicly Observable Artefacts Secret Channels

?

?

Figure 3.10.: Disclosing secret integration channels. On the left: artefacts on public channels (e.g.,
patches on mailing lists) are assigned to commits in the repository. On the right: Commits
that lack assignable public artefacts arise from secret integration channels.

security mailing lists are closed-recipients lists to avoid early public attention. Only
carefully selected and trusted individuals have permission to join those lists. Security
lists are used for coordination, and to setup private communication between reporters
and affected subsystems. They can also be used to develop the actual fixes for the
issues [Kro20].

Eventually, when the fix is in its final state, it is released for all affected version of
the kernel that are supported by the community: This leaves the first publicly visible
footprint of the vulnerability: the patch(es) in the repository. Yet, it misses a link to a
publicly observable artefact.

For detecting type γ commits in repository, I reverse the question, and find commits in
repositories that do not enjoy any traceable pre-integration history.

Temporally, a patch should first appear on a public mailing list before it can be found
in the repository. Hence, any new commits in the repository that can not be assigned
to emails that were received before integration were integrated through non-public
integration channels.

3.4.2 Analysis

In contrast to a just-in-time online analysis that constantly monitors new incoming mails
and commits on a regular basis, I perform the detection of off-list patches as an ex-post
analysis of a predefined time window. From a retrospective view, I can examine if a

3.4 Violation of Development Processes 79

commit would have been detected as an off-list patch if a just-in-time online analysis
would have been performed.

Overview

I am naturally limited by the availability of artefacts for the choice of time window
for the analysis. For the time window of emails, I consider the date since creation of
our lab’s collection (2019-May-01) until I performed the analysis (2019-Dec-01). I did
intentionally not use the official repositories, as they miss MLs (Ref. Section 2.3.4).

Patches typically takeweeks tomonthsuntil they are integrated to the repository (Ref. [JAG13]
and Section 2.4.2). Note that the VCS of the Linux kernel, git, distinguishes between
two temporal events: the author date and the commit date. The commit date is the
date when the commit has been applied to the developer’s (local) repository. Rewriting
a repository’s history can affect commit dates. The author date is the date when the
commit was originally made (e.g., the date when the code was committed by the original
author to their repository) or, in case of an email-based workflow, the timestamp when
the email was sent (i.e., the Date: header of a mail). Hence, I integrate all commits
with an author date within the same time window as chosen for emails. I respect all
commits that meet the abovementioned criterion up to Linux version 5.4 (released
2019-Nov-24).

In that time window, 516,197 different messages can be found,≈ 40% of them contain
actual patches. However, not all mails that contain patches are relevant for the analysis.
Messages contain mails from bots, pull requests, backports and other noise. The tool
PaStA filters those messages by applying appropriate heuristics. 30,396 commits can be
found in the corresponding time window of the repository.

In the time window of the analysis, PaStA was able to map≈96% of all commits against
patches frommailing list and therefore regular development noise, while 1,240 commits
were not assigned to any Message-Id.

A commit with a missing mapping to a message can fall into one of the following cate-
gories:

1. The heuristic failed to detect the patch (false negative).

2. The original patch was sent to the list before I started recording mailing list data
(miss of discussions).

3. Off-list patches – patches that were integrated through a non-public channel.

80 Chapter 3 Analysis

Off-list Patches

With a manual investigation of the remaining 1,240 commits, I was able to find different
categories for off-list patches in the Linux kernel repository. Figure 3.11 illustrates
different types of off-list integration channels.

Observable Integration
Channels

Linux Mainline
Public Mailing List

Patch
Corporate MLs

Patch

non-public
List

Patch

Patch

Revert
Commits

Patch

Direct
Commits

Figure 3.11.: Public observable (left) and non-public in-
tegration channels (right).

Revert commits A revert commit is a
commit that reverts a previous com-
mit in the repository’s history. They
are used, for instance, to eliminate
new features or enhancements if they
cause undesired side effects or if they
are in a defective or an incomplete
state. It is often the preferred choice
to revert the commit, as it is more ef-
ficient and less error prone to simply
revert corresponding changes rather
than to provide expensive or complex
fixes, especially at the end of a devel-
opment cycle. A refined versionof the
commit can later be integrated during
the next development cycle.10

Many maintainers do not send reverting patches to mailing lists. They either integrate
the reverting patch directly, or they send a response to the original thread of introducing
patch that it will be reverted while omitting the actual reverting patch. Hence, the
reverting patch can not be found on the mailing list.

Such reverting patches can automatically be detected, as the subject line of the commit
message contains the keyword Revert by convention. For the time window of the
analysis, I detected 64 off-list revert commits in the repository.

Commits by Repository Owners Repository owners have a special role in projects: They
have the permission to push code to official resources.

In case of Linux, Linus Torvalds is the owner of the official repository and the last
approving authority. It is his final decision to judge if a patch or pull request is integrated
mainline.
10Example: Linux Commit 69bf4b6b54fb: [...] and it’s [the bug] not immediately obvious why it happens. It’s

too late in the rc cycle to do anything but revert for now.

3.4 Violation of Development Processes 81

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69bf4b6b54fb7f52b7ea9ce28d4a360cd5ec956d

This, in turn, allows him for integrating or reverting patches ad libitum. It is not un-
usual that he reverts patches without discussion or short before the release of a new
version.11

Torvalds sees himself as the manager of the Linux kernel – and no longer as active
developer. Nevertheless, he sometimes integrates code or fixes without any prior public
discussion. Those commits can automatically be detected, as project owners are known.
For the time window of the analysis, I detected 48 off-list patches from Linus Torvalds.
None of them contained security-related fixes.

However, the phenomenon of bypassing public review processes can also be observed
at other maintainers.

Bypass of public review processes During the analysis, I found several regular patches
that have never been sent to any public mailing list. To exclude false negatives of the
heuristic, I contacted 18 different authors and collected affirmative answers from 14
authors – four did not answer.

All of them confirmedmy finding that their patch(es) have never been posted on a public
mailing list. For example, I found that one maintainer committed 40 patches to their
repository in the time window of my analysis. The author confirmed my assumption
and commented that they did not expect it to be that many. Most patches were only
minor stylistic fixes, but I also found invasive patches. The author agreed that those
patches would have required a public review process. I questioned maintainers why
they skipped the official review process. Their typical answer was that they accidentally
forgot to send the patch.

While many of those commits contain uncontroversial changes like documentation,
style or typographical fixes, other commits contain in-depth fixes for subsystems. One
maintainer explained that they picked up a fix from another subsystem that is also
valuable for their area of responsibility. However, all responding maintainers agreed
that those patches should have been publicly discussed.

Established non-public integration channels Besides maintainers that directly commit
patches without discussion, I also found subsystems that tend to bypass public review
processes.

My observations give evidence that some subsystems deliberately bypass public review
processes. For example, there are whole architectures and subsystems that are in the
11Example: Release of Linux 5.3: Linux Commit 72dbcf7215.

82 Chapter 3 Analysis

https://lkml.org/lkml/2019/9/15/241
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=72dbcf72156641fde4d8ea401e977341bfd35a05

responsibility of certain companies.12 A corporate representative has the role as an
official mainline subsystemmaintainer, which gives them the possibility to send pull
requests to Linus—by trust. Within those subsystems, off-list patches can be found from
authors other than the maintainer. Still, those patches can not be found on any public
mailing lists. At the same, the author’s and maintainer’s email address show that both
work for the same company.

Fromsuch artefacts in commits, I conclude the existence of non-public company internal
review and integration processes. However, those patches do intentionally bypass public
review process.

One maintainer confirmed my assumption and underlined that they forgot to add the
public list, and that normally all patches are discussed on the public mailing list before they
land.

Security Vulnerabilities The remaining commits contain fixes for security vulnerabilities.
According to Linux’s security process (explained in Section 3.2), patches for security
vulnerabilities should be discussed on private non-public communication channels.

Typically, the majority of those patches drown in the noise of thousands of other com-
mits. To prevent simple keyword-based search heuristics, commit messages are worded
neutrally, links to CVE entries are only sometimes mentioned in the commit mes-
sage [Kro19].

To confirm the assumption that I hit security vulnerabilities through non-public integra-
tion channels, I contacted 12 authors. A list of the related and confirmed vulnerabilities
can be found in Table 3.3. All of them confirmed that those patches are security related
and that they have either been discussed on the non-public security mailing list, or been
sent directly to the maintainer.

I calculated, in days, how long it takes for Debian 10 (Buster) and Ubuntu 18.04 (Bionic
Beaver Hardware Enablement Kernel) to apply the patch to the distribution’s fork of the
Linux kernel. Positive numbers denote a potential temporal advantage for an attacker,
negative numbers mean that the distribution applied the patch before it was disclosed
to public. The categories of vulnerabilities contain denial of service attacks, buffer
overflows, privilege escalation, and buffer over-reads.

In the analysis, I found, among others, fixes for the spectre-like attacks CVE-2019-
11135 [Sch+19b] and CVE-2019-1125 [CVE19]. Ubuntu integrated both fixes before they
12I do not want publicly point to those subsystems.

3.4 Violation of Development Processes 83

Table
3.3.:A

listofvulnerabilitiesthatw
ere

detected
by

m
y
approach

and
confirm

ed
by

corresponding
authors.A

negative
period

m
eansthatpatchesw

ere
integrated

by
distributionsbefore

the
vulnerabilitiesw

ere
disclosed.SecM

L
m
eansifthe

patch
w
asrouted

through
the

security
m
ailing

list,or
privately

discussed
w
ith

m
aintainers.

CV
E-2019

D
escription

Patches
SecM

L
U
buntu

18.04
D
ebian

10

N
A

D
oS

vulnerability
forCavium

system
s

4
no

59d
n/a

N
A

sm
ack:use

afterfree
1

no
14d

n/a
13233

x86/insn-eval:use
afterfree

1
yes

54d
61d

13272
pot.privilege

escalation
1

yes
25d

12d
12817

ppc:inter-processm
em

ory
leak

2
yes

-5d
44d

1125
x86/speculation:spectre

v1
sw

apgs
4

yes
-5d

2d
14283

floppy:out-of-boundsread
2

yes
71d

18d
14283

floppy:D
oS

/div
by

zero
2

yes
71d

18d
11833

ext4:leak
ofsensitive

data
1

yes
71d

29d
N
A

s390:pot.leak
ofsensitive

data
1

yes
45d

n/a
N
A

apparm
or:outofboundsby

user-controlled
data

1
no

179d
60d

11135
x86/tsx/speculation:TSX

async
abortside

channel
9

yes
-1d

-1d

84 Chapter 3 Analysis

were publicly disclosed, while Debian only integrated fixes for CVE-2019-11135 before
they were publicly disclosed.

I also found patches for an easy to exploit13 denial-of-service attack for ARM64-based
Cavium systems. The vulnerability has no assigned CVE entry. It took almost twomonths
for Ubuntu Bionic to integrate the patch. At the time of writing, Debian Buster, as well
as the affected 4.19 Linux LTS tree, still lack appropriate fixes.

For the majority of vulnerabilities, my approach gives an attacker a temporal advantage
from 2 to 179 days. While most patches for vulnerabilities are included on the stable
Linux LTS trees, some distributions still lack patches for the corresponding vulnerabili-
ties.

3.4.3 Related Work

Software vulnerability life cycle analysis is related to this areawork, andawell-researched
topic [Hua+16; SSL12; Aro+10].

Huang et al. [Hua+16] find a considerable delay between disclosure of vulnerabilities
and the availability of fixes. Based on a case study of six different projects, they found an
average time of 52 days from vulnerability disclosure to releasing an actual fix. However,
they also find that almost half of the vulnerabilities are fixed within one week.

In 2010, Arora et al. [Aro+10] argue that instant disclosure of a vulnerability forces
vendors to speed up the release of a fix by 35 days.

Shahzhad et al. [SSL12] analyse the life cycle of vulnerabilities that are filed in software
vulnerability data sets. In their large-scale analysis that includes a big variety of different
projects, they find that the amount of time required to fix vulnerabilities decreased from
1998 to 2011: Since 2008, 80% of all vulnerabilities are fixed by vendors before their
disclosure. Yet, their study does not consider that providing a patches is only a first
step, but necessitates integration in software distributions, and actual deployment by
users.

In a large-scale empirical study, Li and Paxson [LP17] investigate bug-fixes for security
vulnerabilities in open-source projects. For their comprehensive analysis, they assign
3,094 CVE entries in the National Vulnerability Database (NVD) to 4,080 commits in 682
unique git repositories. Mining for links to commits in the CVE description establishes
the approximate connection between CVE entry and commit hash. Later, they extract
characteristics of security-related commits. They find that security fixes are less complex
13According to an assessment by the author of the fixes [Zyn19].

3.4 Violation of Development Processes 85

and more localised than non-security fixes. Furthermore, they find that 70% of security-
related patcheswere committed before public disclosure and conclude that development
and deployment processes provide a window of opportunity for exploitation. However,
for a responsible disclosure process, it is necessary that patches must be developed (and
committed) before disclosure. Yet, the date of a commit is not necessarily the date of
its public visibility. In this work, I showed that developers intentionally distribute and
release patches on secret channels before they finally publicly publish the repositories.
Attackers do not have the opportunity for prior exploitation in those cases. In this
analysis, I respect this fact and use the time difference of the public availability of
a binary software release and the date of the public disclosure as the basis for my
analysis.

Kroah-Hartman argues that only a small fraction of Linux kernel security fixes are
assigned to CVE entries [Kro19]. From 2006-2018, 1005 CVEs were assigned to the kernel.
He argues that, on average, bugs with CVE entries are 100 days fixed in mainline before
they get a CVE assigned. Furthermore, he argues that the amount of vulnerabilities of
vendor distributions can significantly be reduced by choosing LTS versions of Linux.

Insider attacks, such as infiltration, or compromises of organisational structures, are
well-known in literature [Bis+14; KP13]. I showed a practical outsider attack that exploits
the openness of the development model itself by using its development artefacts to
conclude to systematic integration of patches that lack public discussion. In [And02],
Anderson argues that the security of a development model should not depend whether
it is open or closed.

The software engineering community uses artefact mining techniques to draw quantita-
tive conclusions on development processes [Job+17] or to determine various software
performance indicators [Hem+13; Chá+17].

3.4.4 Acknowledgements

I thank Greg Kroah-Hartman for giving us the opportunity to discuss the topic with
Linux kernel security officers. I also thank authors of off-list patches for their detailed
answers, discussions on their patches and fruitful conversation. I do not mention them
by name.

86 Chapter 3 Analysis

3.5 Discussion

This section is a common discussion of Section 3.3 and Section 3.4. I first examine
validity and potential weaknesses of my approach, and then discuss how my results
affect OSS development processes. I conclude with suggestions how they can be adapted
to accept (and deal with) risks that are anyway unavoidable, and concentrate on handling
highly critical issues as good as possible.

3.5.1 Validity

Analysis method My approach is an ex-post analysis. In Section 3.3, I consider a time
window of almost a decade of development. For this time window, I lack full coverage
of all Linux Kernel mailing lists. However, as this analysis investigates patches and
commits of type α and β, full coverage is not required. In particular, I focus on the
analysis of the Top-4 high frequent MLs of the Linux kernel, which is part of my ML
archive of the time window of the analysis.

In contrast, the analysis in Section 3.4 requires full coverage of all MLs. Hence, I
consider a time window of seven months, since the beginning of the ML collection of
our laboratory. This allows for judging from a future perspective if a patch would have
been detected as an off-list patch at the time it was integrated into the repository.

Nevertheless, while the retrospective position is only required to determine the practica-
bility of the approach in case of the offlist analysis: It is straightforward to extended the
methods to apply just-in-time, which is obviously necessary to abuse any undistributed
security fixes. Periodic, frequent updates of the repository andmailing list data ascertain
valid and current data, and are a mere technical detail. New incoming commits must
be compared against the available mailing list data. If a patch is not an off-list patch,
then the corresponding mailing list entry must be available at the time of the analysis.
As soon as a commit is pushed to a public available repository, my method allows to
determine if the commit comes from a private channel.

In a private discussion, Greg Kroah-Hartman, maintainer, among others, of the stable
and LTS trees of the Linux kernel, states the undocumented procedures how patches
are distributed behind the scenes [Kro20]. The exchange strategies vary depending
on the involved maintainer(s) and the issue at hand: One possibility is to exchange
patches via private email. Another method is to distribute patches as git bundles, a
technique that allows for exchanging elements of a git repository without relying on
public remote servers, while it still guarantees stable commit hashes to maintain unique

3.5 Discussion 87

patch identifiers. In a third method Linus Torvalds pulls patches from a maintainer tree.
Since such trees are publicly available, this method opens a further temporal advantage
for attackers, as a just-in-time analysis can also monitor patches from maintainers’
repositories.

Generalisability The primary concern of this analysis is an in-depth analysis of patch
flow into the Linux kernel repository from public and non-public resources by using
peculiarities of its mail-based development process. However, the approach is neither
limited to Linux as analysis target, nor tomailing lists as means of discussion. Except for
handling some technical details and taking minor process differences (e.g., the use of
multiple parallel communication channels) into account, the approach can be directly
applied to such systems.

Of course, the exact reasons for the existence of non-public integration channels depend
on the project. Especially in projects with smaller communities, maintainers often tend
to directly commit code changes without public announcement or discussion (e.g., Busy-
Box), as upfront public discussion is often considered time-consuming and dispensable.
However, this limitation is mitigated by the fact that projects with smaller communities
only receive a moderate amount of patches. Especially critical system software typically
demands adherence to public review processes, regardless of community size.

My idea of development process reverse engineering is also applicable to processes
that do not build upon mailing lists: If any publicly available development artefacts
(e.g., pull requests, entries in issue trackers, …) are available that include relevant data
before their integration, then reverse process engineering uncovers any irregularities,
in particular, deliberate violations of the development process.

Scalability Concerning Section 3.3, I conducted the analysis on the Linux kernel with
a time window of almost a decade. 2,499,510 patches were compared against 709,909
commits. To the best of my knowledge, Linux is the largest OSS projects that uses ML
as the core element of its development process. This underlines the scalability of my
approach with Linux, as well as with other projects.

With respect to Section 3.4, I conducted the analysis on a time window of roughly seven
months, I found 30,396 relevant commits in the repository (authored after 2019-May-
01 and integrated before Linux v5.4, released 2019-Nov-24). Within those commits, I
found 1,240 potential off-list patches. By applying heuristics to exclude revert patches
and commits by project owners, I was able to exclude further 112 commits. With my
approach, I filtered≈96% of regular development noise.

88 Chapter 3 Analysis

Nevertheless, 1,128 commits required manual analysis, which may seem to imply a
considerable impediment to a fully automatic system at first glance. However, commits
span a timewindow of 207 days. On a daily basis, this accounts tomanual investigation of
(rounded up) six commits per day. Assuming, in accordance to my personal experience
gathered, that an experienced developer can decide within a minute or two if a patch
addresses a vulnerability, then the daily time investmentwould only require a reasonable
amount [Mur+19] of around ten minutes.

Not enjoying the benefits of PaStA would require a fully manual inspection of all incom-
ing commits, which is unrealistic: The official repository of the Linux kernel (merge
commits are already excluded) received 70,632 commits between release v5.0 and v5.4.
The development between those releases took 329 days. On average, 215 patches were
integrated per day. Assuming the same amount of time required for manual investi-
gation, an experienced developer would need more than three hours of concentrated
reviewing per day. Hence, I argue that my approach is suitable for real-world scenarios,
as it significantly reduces the amount of time that is required for manual review.

However, the time to find some security-related fixes could be reduced even to zero
by employing simple heuristics, such as filtering for well-known author or institution
names: For instance, out of the 12 fixes I identified, 3 originated from Jann Horn (GPZ).
While this might have been pure coincidence, I argue that learning about the social
structure behind Linux could be exploited in this respect.

Internal Validity The approach of PaStA is able to reconstruct the development process.
The approach can be used for further quantitative analysis of aspects of the development
process.

In particular, the approach systematically uncovers non-public integration channels
and identifies commits that are potential fixes for security vulnerabilities. However, the
method fails for vulnerabilities that are discussed in public before integration.

Statistical data on howmany patches are sent to private security mailing lists, or how
many critical vulnerabilities are discussed in public are not available. Hence, it is hard
to calculate the accuracy of the approach since the recall is not available. Yet, I found 12

vulnerabilities in my analysis, which underlines the practical utility of the approach.

However, it is worth mentioning that counting or searching for CVE entries for a certain
time window is neither an appropriate method of accounting the number of vulnerabili-
ties in a system nor an alternative method to automatically find security vulnerabilities:
Only a fraction of kernel security fixes get CVEs [Kro19; Edg19] assigned. CVEs are

3.5 Discussion 89

also known to be abused as integration shortcuts [Kro20],14 and do on occasion not even
address real vulnerabilities [Cor19].

Construct Validity With respect to Section 3.4, I discussed my method with experts of
the closed Linux security mailing list. They confirmed validity of my approach to gain
information on non-public integration channels.

3.5.2 Consequences

Fixes for Vulnerabilities The primary success criterion for my approach is simple: Can
attackers gain temporal advance to design exploits? I argue that this is the case if the
patch can be found in public resources before software distributors roll out patches:
Reverse engineering of the development process allows for aimed targeting of commits
that would otherwise hide between thousands of other commits.

As mentioned in Section 3.2, the majority of patches for vulnerabilities first appear in
the Linux mainline and stable trees before distributions pick up the relevant patches.
From a temporal perspective, patches first appear on mainline and stable trees, and are
then integrated by distributions (cf. Fig. 3.1, Vulnerability 1). I call this the mainline first
disclosure model.

However, there is an exception for highly critical vulnerabilities: Before their public
disclosure, patches are secretly disclosed to the kernel maintainers of the distributions,
which buys them time to prepare their kernel tree to roll out updates (cf. Fig. 3.1, Vul-
nerability 2) as soon as an embargo ends. In this way, a patch can be integrated to the
distribution’s tree before it is published mainline.

This method ensures that affected systems can receive fixes as soon as the vulnerability
is officially disclosed. Yet, this process requires time-consuming and extensive coordi-
nation between maintainers of distributions and the kernel community, since a strict
temporal publishing coordination is required to make the approach effective. Coordina-
tion efforts are even more complex when hardware bugs (such as bugs in speculative
execution [Koc+19; Lip+18]) are involved, as multiple operating systems can be affected.
This additionally requires cross-community coordination—between different operating
systems (variants of BSD,Windows, macOS), commercial and non-commercial vendors,

14For instances, processes of commercial companies that must be passed before contributions can be
placed in open source projects can contain shortcuts for critical vulnerabilities, and “critical” is equated
with “has CVE assigned”.

90 Chapter 3 Analysis

and, under exceptional circumstances [Koc+19], even with compiler manufacturers.
This process is therefore only considered in rare cases.

I call this process the distro first disclosure model, as patches are integrated by distribu-
tions before they are officially published mainline.

According to Kroah-Hartman [Kro20], there is no clear definition of the disclosure
process, and no definitive criteria for circumstances when the distro first model should
be used. As an ad-hoc process, subsystem maintainers decide how to handle a fix:
patches can, for example, be routed throughmaintainer trees to Linus Torvalds, or Linus
merges the patch directly, depending on the area of the kernel that was involved.

To give an example, fixes for flaws in the speculative execution model (cf. CVE-2019-
11135 [Sch+19b] and CVE-2019-1125 [CVE19]) of modern CPUs were entirely developed
and rolled out to distributions in private. My approach can still detect that the patches
stem from off-list channels as soon as they are available in a repository – but at that
point in time, patched binaries are already available for the public. Nevertheless, my
method can still provide some valuable temporal advance as the availability of patches
does not imply immediate deployment in the field.

However, the mainline first disclosure model is used for the majority of fixes for vul-
nerabilities. As distributions maintain forks of the Linux kernel, and manually select
patches that are integrated frommainline, it can take up to months for patches to be
integrated (cf. Table 3.3). In particular, selecting patches for local forks on a case-by-case
basis misses relevant fixes that are available on LTS.

For these cases, the integration process of distribution kernels can be considered as
security by obscurity, since

(a) the patches do not follow a coordinated disclosure process to distributions to
protect affected systems before their official publication, and

(b) the existence of the actual fixes is obfuscated by private discussion and regular
development noise.

I hence argue that release strategies of distributions should be reconsidered, as I have
demonstrated that distributions are vulnerable for attacks over long periods of time.

Furthermore, I argue that fixes for vulnerabilities should be publicly discussed after
their disclosure. While preliminary versions for severe vulnerabilities that require distro
first integration should be developed under the distro first model, I recommend using a
full disclosuremodel in all other cases. Early versions of fixes for vulnerabilities can still
be discussed on secret lists, but they should be publicly reviewed after their embargo.

3.5 Discussion 91

Apublic reviewprocess can enhance the software quality of the fix per se—after all, this is
the main concern of public discussion—, but can also avoid the inadvertent introduction
of additional vulnerabilities by fixing one vulnerability, which is unfortunately a real
pattern [Cor19]. Public discussion before integration would also defeat my mechanisms,
which is eventually desirable.

Code Infiltration and Violations of theDevelopment Process In addition to detecting fixes for
vulnerabilities, I also encountered hidden integration channels besides security mailing
lists, such as maintainers or companies that—systematically or inadvertently—bypass
official submission procedures, for instance by direct maintainer commits without
external review, or company-internal review. The existence of such channels, shows
that trusted individuals can easily infiltrate the project, and secretly introduce malicious
artefacts (while this possibility is given,mymethod allows for finding concrete instances,
which is otherwise not possible). The existence of such commits contradicts one of the
key promises of an open development model.

I contacted maintainers for subsystems for which I found such patches, and they con-
firmed the assumption that they integrated code without prior public review. While
maintainers are aware of that they sometimes intentionally bypass the process, they
were surprised of the magnitude of unreviewed patches—the confirmed “record” is
more than 40 per half-year per author, the estimated number for unconfirmed cases is
higher.

3.6 Summary

I showed real-world applications that apply the methodology for reconstructing devel-
opment processes as shown in Chapter 2.

In Section 3.3, I focus on regular development ongoings. With the Linux kernel as a
reference for the analysis, I examined the evolution of ignored patches, and the evolution
of conformally integrated patches over almost a decade. I showed the decreasing amount
of ignored patches, as well as the increasing amount of correctly integrated patches.
This underlines an increasing conformance to self-imposed development processes.

These data provide a quantitative basis for argumentation on the evolution and adher-
ence to development processes, as it is, for example, required for the certification of
safety-critical systems.

92 Chapter 3 Analysis

Analyses show, how quantitative software engineering techniques can support safety
certification efforts, as they provide solid and evidence-based characteristics of the func-
tioning of development processes. Furthermore, they provide a better understanding of
development dynamics in large-scale OSS projects.

In Section 3.4, I showed that reverse engineering of public development processes also
allows to detect code that arises from non-public integration channels. My approach
removes 96% of regular development noise and points to hot spots that contain fixes for
critical security vulnerabilities. With my method, I was able to detect 12 vulnerabilities
in Linux in a time window of seven months. I collected responses from all authors
that confirm my presumptions. Attackers can use this information to gain temporal
advantage, as they can design exploits before affected systems receive patches.

Furthermore, I found evidence that some subsystems and maintainers of the Linux
kernel intentionally bypass the regular development process. Therefore we argue that
it is possible to systematically infiltrate malicious code to the kernel by bypassing the
(mandatory) public review processes. I shared our findings with the Linux kernel
community and discussed possibilities of potential mitigations.

Both analyses show the wide range of possibilities that is given by the reconstruction
of development processes, and provide a powerful and scalable instrument to support
safety certification efforts, as they give evidence-based and quantitative answers to
the factual situation of the development process. Quantitative software engineering
techniques provide answers to questions that arise from non-functional requirements
on a formal basis.

3.6 Summary 93

End of Part I

95

Part II

System Consolidation of Safety- and
Mixed-Critical Systems

Ideal Hardware Partitioning 4
„Simplify, then add lightness

— Colin Chapman
Automotive Engineer

SHARE-ALT
This chapter shares material with the OSPERT ’17 paper “Look Mum, no
VM Exits! (Almost)” [Ram+17].

Industrial real-time control systems are often built by extending general purpose COTS
hardware components to reduce development effort in time and cost by maximising
the re-use of existing solutions. The approach is commonly taken in many indus-
trial domains, for instance automation and control systems [KG19], civil infrastructure
projects [Fou19], medical appliances [Kis09] or robotics [Qui+09].

The approach is beneficial if flexibility in system capabilities is more important than
potential reductions in cost that can be achieved by mass-producing tailored devices
that precisely satisfy requirements, but usually never exceed them. Such scenarios often
appear, for instance, in the automotive industry, but are rarely applicable to low-volume
domains like medical appliances, industrial control, or even home automation.

Currently, CPUs with multiple physical (and virtual) cores are a de-facto standard in
modernCOTShardware for non-microcontroller appliances, and their specifications and
capabilities often considerably exceed the least demand for a given set of requirements.
Consequently, most systems provide unused, excess hardware resources that can be
used to integrate additional tasks.

Systems of increasing complexity and software intensiveness need to deal with work-
loads that contain tasks at different levels of criticality; the resulting scenarios have
received substantial attention during the last decade [BD13], and the conceptual advan-
tages and disadvantages of the many possible approaches to build such systems are well
researched.

99

One particular scientific focus of analysis for classically tailored embedded systems is
on schedulability of workloads, fault tolerance or optimal work balancing to achieve
deterministic and an optimumutilisation of the hardware. In those scenarios, minimum
system requirements determine the most cost-effective choices for the hardware. For
high volume systems, it is not unusual that special-purpose CPUs or Systems-on-a-chip
(SoCs) are designed to satisfy very specific use cases, which then necessitates intensive,
software-moderated sharing of resources. With few exceptions [DL17; Mül+14], this
resource management is typically implemented by operating systems.

StaticHardwarePartitioning A common industrial requirement is to safely runworkloads
(i.e., self-contained functional aspects of a system) of mixed criticality on such multi-
core systems [Bul17b] aside Linux (cf. Req. 1). As more CPUs than different workloads
are available, mixed-critical tasks can be exclusively assigned to dedicated CPUs, and
the availability of Linux (and its feature-rich ecosystem) allows for running less critical
tasks on the remaining CPUs.

In conventional resource-sharing systems, resource management introduces a signifi-
cant portion of complexity to the system software stack, and complexity is a well-known
source for erroneous behaviour. Furthermore, complex software stacks endanger real-
time capabilities of the system, as deterministic behaviour of complex systems is hard
to control.

Static hardware partitioning is an approach tominimise the amount of software required
for resource management. In statically partitioned environments, workloads execute in
isolated domains. Workloads have direct access to underlying hardware resources of
the system, without the need for sharing them with adjacent domains. To the greatest
extend, additional runtime overheads caused by software-based mechanisms to enable
overcommitting are obsolete, as workloads directly access hardware resources without
any intermediate software layer that abstracts or logically partitions the underlying
device or resource. Depending on the workload of a domain, hardware-moderating
instances (e.g., OSs that govern multiple workloads) become optional. Static hardware
partitioning allows to run digital signal processing (DSP)-like workloads in parallel to a
fully-fledged OS.

The superfluity of resource management covers all hardware resources that are typi-
cally shared in conventional managed systems: CPUs, memory and input / output (I/O)
(i.e., peripheral devices). As CPUs are unshared, there is no need time-sharing of CPUs
in statically partitioned environments. Hence, there are no software-based schedul-
ing and scheduling-related overheads of a transparent underlying moderator (i.e., OS
scheduler or VMM scheduler). As a consequence, systemic overheads that stem from

100 Chapter 4 Ideal Hardware Partitioning

overcommitting hardware resources and that are typically object to real-time analyses
are eliminated.

Of course, the guest software can implement its own scheduling or hardware abstraction
mechanisms. Furthermore, workloads can be fully-fledged operating systems (e.g.,
Linux), for less-critical aspects of the system (cf. Req. 1).

Static hardware partitioning requires, besides static assignment of hardware resources
to computational domains, strict cross-domain isolation: There must exist means which
guarantee that domains can not interferewith neighbouring domains in an unacceptable
and unintentional way (e.g., illegitimately access of adjacent resources).

One approach to enable static hardware partitioning and strict isolation is classical
hardware-assisted process virtualisation: A hardware component, the MMU, is used to
limit the visibility of the physical address space of a execution domain to fine granular
segments. Access beyond the scope of view is not possible. In many modern GPOSs,
MMUs are the basis for memory-isolated multitasking. However, process virtualisation
comes with major limitations. While many hardware devices are accessed via Memory
Mapped I/O (MMIO) that can be directly assigned to the virtual address space of the
domain, there exist platform devices that can not be partitioned with standard means of
process virtualisation. Examples for mechanisms that are not partitionable by the MMU
without further extensions are the MMU itself, Programmed Input/Output (PIO)-based
port access or access of model-specific registers (MSRs) on x86 systems. Access to such
registers must be moderated by an underlying authority, as it might affect the whole
state of the system. Additionally, on many architectures and without further measures,
interrupt controllers can not be assigned to computing domains, as illegitimate changes
could affect other domains. However, especially in real-time environments it is crucial
to have fine granular control over those devices.

Furthermore, the concept of memory management or memory virtualisation is often
tightly coupled with the concept of hierarchical protection domains, privilege levels, or
CPU rings. Software that runs in the least privileged level is, for example, not allowed
to execute instructions that modify the operating state of the CPU, reconfigure the
interrupt controller or access system ports. However, especially domains which execute
real-time critical workloads require to execute such reconfigurations without limitations.
Running the domain in higher privileges is a non-satisfactory solution as this would
give domains permissions to extend its own visibility on hardware, which is contrary to
isolation primitives. At this point, solely exploiting the concept of process virtualisation
would lead to amassive overhead ofmoderation of otherwise non-partitionable platform
devices.

101

Ideal Hardware Partitioning Virtualisation extensions of modern COTS CPUs offer op-
portunities for hardware virtualisation. While process virtualisation makes the strong
assumption of the existence of an underlying OS-layer, hardware virtualisation, in con-
trast, allows for the creation of execution environments that model the full platform of
the underlying platform. This includes full access to low-level platform components
without logically affecting neighbouring domains. Virtualisation extensions allow for
assigning formerly unpartitionable hardware devices to computing domains, while
guaranteeing strict isolation. A computing domain sees its own subset of guest physical
memory, and can take the full advantage of the MMU as it would function on bare-metal,
without being virtualised—the hardware is virtualised. This allows guests for running
legacy payloads, payloads that formerly run on bare-metal hardware without the need
for major modifications (cf. Req. 2).

Those virtualisation extensions have their roots in common enterprise, desktop or
mainframe virtualisation [Hei08]. Many of these traditional usages of virtualisation
consider the consolidation of services as major motivation, while their focus is on high
throughput instead of strict maintenance of determinism and low-latency. Providing
functionality for efficient sharing and overcommittment of hardware resources is more
important than providing a fully partitionable system without hypervisor intervention.
Nevertheless, virtualisation extensions provide promising methods for embedded RT
virtualisation.

Maintaining RT capabilities of the platform is the major concern of embedded virtuali-
sation. Hence, I aim at a fully partitionable hardware architecture with zero software
overhead due to the intervention of hypervisors or VMMs during runtime: software that
is not required during runtime and that can be fully offloaded to hardware components
can not cause additional unintended latencies. It only depends on RT guarantees that
are given by the hardware. Note that the hardware needs to give RT guarantees in any
scenario. A zero-trap hypervisor is the strongest requirement that can be demanded
from a virtualised real-time system architecture. No software indeterminisms can stem
from the VMM during the operative phase of the system. A zero-trap hypervisor is
a requirement for the concept of ideal hardware partitioning, which I will define and
present in the next section.

With zero traps, I refer to zero hypervisor activity in the operative phase: Of course, there
are exceptions for intended hypervisor activity during the startup of the system, that
is, the partitioning phase. Furthermore, VMM activity is allowed during bootstrapping
of an execution domain, or during (intended, synchronous) maintenance tasks. As a
beneficial side effect, zero traps implies less software that otherwise would be required

102 Chapter 4 Ideal Hardware Partitioning

to handle the traps, as moderation becomes superfluous. This results in a thinner code
base, which simplifies certification efforts.

While static hardware partitioning aims to minimise hypervisor overhead, ideal hard-
ware partitioning fully eradicated any unintended hypervisor overhead. With ideal hard-
ware partitioning, I address all requirements on safety-critical resp. mixed-criticality
systems (Ref. Section 1.2.1). Yet, it remains an open question if this approach is feasible
on modern COTS hardware components. In the next section, I will elaborate funda-
mental requirements on static hardware partitioning, and introduce the term of and
requirements for ideal hardware partitioning.

4.1 Requirements on Ideal Hardware Partitioning

In 1974, Popek and Goldberg postulated Formal Requirements for Virtualizable Third Gen-
eration Architectures in their seminal work [PG74]. They provide a fundamental formal
definition of VMMs, and give requirements on their (efficient) implementation. Virtual
machines have to satisfy three properties: equivalence, resource control and efficiency.

Equivalence implies that any programmust behave the same, whether it is run on a virtual
machine or on real hardware – exceptions to this principle are permitted for timing
issues, and for the availability of physical resources. This is obviously problematic for the
application domains I consider in this work, in particular real-time critical workloads.
Resource control implies that the virtualmachinemonitor is responsible for the allocation
and moderation of hardware resources. Efficiency implies that most instructions should
be natively executed without the need of hypervisor interception; notably, the definition
of “most” is left unspecified.

As the efficiency criteria would exclude, for instance, emulated systems, Smith and
Nair [SN05] confine VMM requirements to the equivalence and resource control crite-
rion. In addition, they call VMMs that fulfil the efficiency requirement efficient VMMs.
Note that the efficiency criterion is satisfied if it only holds for most instructions, as
by the definition above, which, in turn, necessarily implies that the criterion can only
relate to average case efficiency. Citing Popek and Goldberg [PG74]: “Because of the
occasional intervention of the control program, certain instruction sequences in K may
take longer to execute, so assumptions about the length of time required for execution
might lead to incorrect results.” Consequently, the definition of efficient VMMs does not
inherit timing- and latency guarantees that are otherwise given by the raw hardware.
Those guarantees are required by real-time use cases.

4.1 Requirements on Ideal Hardware Partitioning 103

4.1.1 Efficiency of VMMs

To provide a more quantitative version of the aforementioned efficiency requirements,
consider a measurementM that is performed on a program P which, in turn, defines an
observable property of the system. M is, in my case, restricted to measure a temporal
duration: The time value t0 records the starting time of the measurement, and time t1
records when the measurement is finished (the criterion for “finished” is given by the
arrival of some external event, or by a satisfied internal logical condition). The value
MP of the measurement is then given byMP = ∆t = t1 − t0. An ideal system that is not
subjected to any other loads than the measurement proper, repeated measurements de-
liver identical values for all runs: M (i)

P = m = const., where the superscript (i) indicates
the i-th measurement. The criterion does, of course, not hold for systems that provide
asynchronously triggered computational services (for instance, performing interrupt
service routines, performing scheduling, …) besides executing the subject program
P . Such activities effectively influence the measurement in the form of noise, which I
model by a stochastic parameter b, drawn from some probability distribution that must
be provided depending on the actual circumstances. M b

P represents a measurement
subject to such noise.

Given a set of measurementsM = {M b,(i)
P } of the observable quantity P under noise

b, I define that the observable is transitive for operation op if op(MHW) = op(MVMM)

holds (MHW andMVMM denote that the measure is performed without and under the
influence of the VMM). If transitivity for a given operation holds for all observables, I
say that the observable itself is transitive.

For a throughput-optimised system, “avg” is arguably the operation of highest interest
because the average-case performance is crucial. For real-time systems, “max” is the
relevant operation becauseWorst Case ExecutionTime (WCET) behaviour is the essential
characteristic of such systems.

Trivially, transitivity for avg and max is guaranteed by ideal VMMs that do not require
any traps during the execution of guests. I tighten the definition of efficient VMMs and
call a VMM an »ideal VMM«, if no traps are required during the operational phase:

Definition of ideal VMMs

A VMM is ideal, if all instructions are natively executed during the operational
phase. Only maintenance operations may be intervened by the hypervisor. In-
structions that cause hypervisor intervention are considered violations.

104 Chapter 4 Ideal Hardware Partitioning

This means that the additional cost of overhead on ideal VMMs is only limited to the
virtualisation overhead (virtualisation cost) of the hardware [Dre08].

While the definition of an ideal VMM is hard to satisfy by hypervisors that premise on
hardware resource sharing and rely on software intensive hardware overcommitting
(implemented by, for instance, device emulation, paravirtualisation [BDF+03] or domain
scheduling), it is a realistic goal for partitioned setups. For partitioned systems, I further
define:

Definition of Ideally Partitioned Systems

A partitioned system is ideal, if exclusive resource access is granted by an ideal
VMM.

Consequently, the ideal VMM criterion can only apply to a subset of partitions of a
partitioned system, for reasons that we discuss in the next section. I call a partition that
runs as a guest of an ideal VMM an ideal partition.

While ideal partitions can already be achieved with modern virtualisation extensions
for constrained environments, complex real-world scenarios still require occasional
intervention.

4.1.2 Architectural System Limitations

Modern hypervisors usually try to satisfy the efficiency criterion by using various hard-
ware based virtualisation extensions provided by modern processor architectures (e.g.,
VT-x [UNR+05], VT-d [Int18b], SecureVirtualMachine (SVM) [AMD05],VT [VH11],…) that
allow for executing most instructions natively. MMU enhancements [UNR+05; AMD05])
of those extensions (e.g., page-table virtualisation) assign host physical memory to
guests. Address translation of guest addresses to host physical addresses is transparently
performed by the MMU and does not require any hypervisor interception—it will only
trap in case of access violation. Furthermore, those extensions introduce an OS-superior
privilege level in which all hardware resources are accessible. The hypervisor may, for
instance, moderate access to shared resources, or directly assign resources to guests.

Other hardware based extensions target the reduction of interrupt overhead [Int18b;
AMD05; Int10; ARM16]. Interrupt remapping allows to directly route selected interrupts
to virtual machines without the need of hypervisor interception. Without interrupt
remapping support, interrupts trap the hypervisor, which will dispatch the interrupt,
and, if necessary, reinject it to guests. If a device is directly assigned to a guest, or if a
platform specific interrupt (e.g., a platform timer interrupt) arrives at the CPU interface,

4.1 Requirements on Ideal Hardware Partitioning 105

interrupt remapping will directly send the interrupt to the virtual machine, if running.
The aim of those extensions is further reduction of VMM overhead.

Nevertheless, depending on their semantic, a hypervisor may, for instance, be required
to moderate the access to sensitive system registers, such as MSRs or different Control
Registers (CRs) on x86, or Control Coprocessor (CP) registers on the ARM architecture.

Themotivation of any of hardware based virtualisation extension is to reduce the activity
of the hypervisor by trap reduction in order to increase the performance of the sys-
tem – frequently required policy decisions are offloaded to hardware. Nevertheless, the
development of those extensions is often driven by throughput-oriented general purpose
systems (optimised on the average case): it is sufficient to offload most decisions, while
for zero-trap hypervisors it is essential that all decision can be offloaded to hardware.

During the development of a hypervisor that aims towards zero traps, I elaborated
concrete system requirements for ideal partitioned systems. In the next section, I
present device specific and platform specific requirements for real-world systems. For
any requirement, I present examples that violate the requirement, as well as potential
software-based workarounds. Such workarounds are, of course, contrary to the envi-
sioned concept, but required due to hardware limitations as discussed in Section 4.2.2.

4.1.3 Device Specific Requirements

Peripheral devices (e.g., Serial Peripheral Interface (SPI), I2C, Universal Asynchronous
Receiver Transmitter (UART) or ethernet controllers) are essential components of any
real-world setup, but they are often ignored and underestimated during systems devel-
opment under laboratory conditions. Peripheral devices are partitionable entities, if
they can be spatially and logically isolated.

Requirement 1: Logical Device Partitioning

The platformmust provide means to transparently assign device control to guests.

In their simplest form, a device consists of control structures and a signalling interface.
The platformmust providemeans to assign those interfaces to guests without hypervisor
intervention.

On many architectures, device control structures are accessed through MMIO. The
MMIO address space of a device is backed by the device’s registers. The typical page size
of almost all modern architectures is 4 KiB ormore, and represents the finest granularity

106 Chapter 4 Ideal Hardware Partitioning

ofmemory that can be assigned by theMMU.Hence, devices need to be spatially isolated
by the granularity of the page size.

32 bits can be seen as the de-facto lowest limit of physical address space of modern
CPUs. While this provides enough space to place different devices on separate pages,
hardware manufacturers often place multiple devices on one single page, even different
types of devices.

This becomes problematic for hardware partitioning, when those devices need to be
assigned to different domains, since only pages can be assigned to guests without the
need to trap and dispatch memory access.

A software based workaround to overcome this issue is subpaging, a technique where
the hypervisor allows for mapping memory areas to guests that are smaller than the
page size. The hypervisor traps on any access and only forwards the request if the guest
has access permission. Any other access is a violation. This leads to noticeable and
undesired slow-downs.

Spatial isolation can be solved by hardware manufactures by assigning different devices
to separate pages.

Furthermore, devices need a signalling interface, typically implemented by interrupts.
The platformmust provide means that interrupts directly arrive at the guests without
hypervisor intervention. This technique is called interrupt remapping and is already sup-
ported by the virtualisation extensions of an increasing amount of architectures [Int18b;
Int10; AMD05; ARM16].

Metafunctions of devices (e.g., device power and reset control, speed, baud rate) are
often controlled by secondary devices, such as clock or reset controllers. Such instances
must be partitionable on a device scope level. Any modification within a device scope
must not affect other devices.

Requirement 2: Hierarchical Autonomy of Devices

Any device metafunctionality must be isolated from other devices and must be
logically partitionable.

On many ARM-based platforms, for example, the above mentioned clock and reset
controllers are not partitionable without hypervisor interception. They are (a) located
on singlememory pages, and (b) control all peripheral devices of the system. In addition
to this, they (c) may also include clock and reset lines, which are often implemented as
complex dependent hierarchical structures.

4.1 Requirements on Ideal Hardware Partitioning 107

Currently, guest access to those functions is not possible without complex hypervisor
intervention. While guests should be allowed to change device settings during runtime,
one workaround (without traps) is to statically set up the device settings during the boot
phase of the hypervisor and to forbid any furthermodification. This can be inconvenient
for some1 scenarios. A complex alternative is to paravirtualise those devices.

Nevertheless, these issues must be addressed by hardware manufacturers by designing
device control instances in a partitionable way: One possible implementation would
be to place all meta functions of a device to a single page and to reduce inter-device de-
pendencies of hierarchically structured clocks. This provides configurational flexibility,
as the page can simply be hidden if a guest shall not be permitted to access these func-
tions. Another approach is to use system specific registers in a standardised manner2

for device reconfiguration. Whitelists can be used to grant fine-grained permission to
functionalities.

However, during the implementation, I observed platforms3 where access to disabled
devices stops the whole platform. This erroneous behaviour was confirmed by hardware
manufacturers. Hardware manufacturers must ensure, that erroneous device access
from within a domain must not affect the whole platform.

Logical isolation of a device is not limited to clock and reset controllers. Any instance
that interacts with a device (e.g., Direct Memory Access (DMA) controllers) must be
designed in a partitionable way. This means, usage, access or configuration of the
instance must not interfere with any other device or CPU.

4.1.4 Platform Specific Requirements

Requirement 3: Platform Resource Partitioning

System platform resources must be partitionable with respect to their domain
affinity.

A CPU interface must not be able to change the macro- and microarchitectural state of a
CPU of another computing domain. This includes, for example, power management
such as sleep states or frequency scaling, memory management or interrupt delivery.
1For example, when reconfiguration of device speed is required during runtime. This can, for example,
occur, when multiple SPI devices on the same bus require different speed parameters.

2Yet to be defined.
3That is, the Nvidia Tegra family – refer to the discussion on the Linux-Tegra mailing list: https://lore.

kernel.org/linux-tegra/f6c3e818-f828-276c-961c-9d61bf4990cd@kapsi.fi/.

108 Chapter 4 Ideal Hardware Partitioning

https://lore.kernel.org/linux-tegra/f6c3e818-f828-276c-961c-9d61bf4990cd@kapsi.fi/
https://lore.kernel.org/linux-tegra/f6c3e818-f828-276c-961c-9d61bf4990cd@kapsi.fi/

The platformmust provide CPU-local control structures, or structures that are restrict
to the local computing domain.

Many traps on a platform result from the lack of (full) virtualisability of platform spe-
cific resources. Access to sensitive system registers, reconfiguration of CPU power
management settings or interactions with interrupt controllers are typical causes for
frequent traps that require hypervisor assistedmoderation. The hypervisor must ensure
that any access must not cause any unintended side effects to other domains. Simple
policy-based decisions can be resolved by hardware support.

On x86 platforms, for example, a hypervisor can conditionally trap MSR access, based
on permission bitmaps. It allows either unmoderated access to insensitive registers,
to either trap on reads or writes, or to trap on both. Platform resource partitioning
requires that any interaction with machine specific registers must not leak information
of other domains, or affect them.

The x2APIC implements interrupt controller virtualisation support for Intel® x86 plat-
forms. It uses MSR-based register access instead of conventional MMIO-based access.
While in a partitioned setup, a hypervisor may allow unmoderated access to insensi-
tive registers, access to sensitive registers, such as the Interrupt Control Register (ICR),
must be intercepted. The ICR is used to send inter-processor interrupts (IPIs) to other
CPU interfaces. Hence, raw write access must be forbidden, as CPU interfaces of other
domains can be addressed. Access must be intercepted by the hypervisor, which will
check permissions and forward the request. Other architectures like ARM [ARM13b;
ARM16] have similar interfaces that require moderation by the hypervisor.

Interception of platform devices can generally be avoided, if the hypervisor can limit the
scope of visibility of CPU local interfaces of its guests. Similar fine-grained conditional
register trap that is, for example, based on bitmasks, is possible and already supported
for various other CPU CRs on x86 [UNR+05].

Requirement 4: Cross Core Independence

Themicroarchitectural state of a core must not be affected by neighbouring cores.

Many publications and successful attacks on microarchitectural and speculative attacks
underline the risks of shared hardware resources [Koc+19; Van+18; Wei+18; Sch+19a;
Min+19; Lip+18]. For real-time performance reasons, and for security reasons [Van+18;
Wei+18; Sch+19a], parts of the execution unit must not be shared. Simultaneous multi-
threading (SMT), for example, violates cross core independence.

4.1 Requirements on Ideal Hardware Partitioning 109

Besides SMT,manymicroarchitectures implement further carriers of potential coverage
channels: caches. Last Level Cache (LLC) is often shared across different physical CPUs.
Depending on the architecture’s cache organisation, this can result in sharing the LLC
across different domains. Sharing caches can lead to performance and security issues
and should be considered dangerous due to following reasons.

1. On many Intel® CPUs, the LLC is an inclusive cache. This means, the LLC includes
all data from lower cache levels. Consequently, the eviction of an entry in the
LLC causes the eviction of the entry in all lower levels. Aimed memory traffic
generated by a CPU can cause consequent overwrites of the whole shared LLC.
As the LLC is inclusive, it will invalidate everything in the L1 cache of all other
CPUs [Int15]. With this, a CPU can cause cache misses of another CPU which is
assigned to a different domain. This causes unintended and unacceptable slow
downs.

2. Furthermore, (shared) caches are a common target for many microarchitectural
attacks [Sch+19a; YF14; Wei+18; GBK11]. Yarom et al. have shown that their
FLUSH+RELOAD side channel attack can be used to reconstruct the control flow
of programs, if two independent processes share the same pages (e.g., shared
libraries). In their paper [YF14], they extract cryptographic secrets by the analysis
of the control flow. The FLUSH+RELOAD pattern is the foundation of many further
microarchitectural attacks [Wei+18; Koc+19; Sch+19a]. Shared caches increase the
attack surface.

In partitioned setups, there is no sharing of common physical pages across cores. There-
fore, partitioned systems do not benefit from shared caches. This protects them against
attacks mentioned in 2., but still exposes them to threats mentioned in 1..

To overcome the scenario explained in 1., Intel® implements the Cache Allocation Tech-
nology (CAT) [Int15] as part of their Resource Director Technology (RDT) [Int19a]. CAT
allows to partition the LLC by the exclusive assignment of dedicated cache portions to
cores. Nevertheless, I believe that their implementation should be considered incon-
sistent: While a core may only allocate and evict cache lines within its scope,” a read
or write from a core may still result in a cache hit if the cache line exists anywhere in
the LLC.” [Int15] This, in turn, opens a new potential (unaudited) attack vector for side
channel attacks: an attacker can FLUSH and RELOAD a cache line. The data is then in
use by neighbouring cores, if the access time measurement confirms L3 presence right
after the flush.

110 Chapter 4 Ideal Hardware Partitioning

There are too many indicators that shared caches misbehave in certain situations, yet
there are no benefits in partitioned scenarios. Platforms should either not support
shared caches, or implement cache partitioning in an consequent nonreactivemanner.

Shared system resources and traces in the microarchitectural state of a CPU endanger
many modern computing systems. It requires careful analysis if and to what degree
partitioned systems might be affected.

4.2 The Jailhouse Hypervisor: Philosophy and Architecture

In this section, I present the architecture and philosophy of the Jailhouse4 Hypervisor, a
Linux-based static partitioning hypervisor that aims to implement ideal hardware parti-
tioning. The jailhouse project was initiated by Jan Kiszka [Ram+17], and is subsequently
refined as OSS project.

4.2.1 Overview

Jailhouse transforms symmetric multiprocessing (SMP) systems into asymmetric multi-
processing (AMP) systems by inserting “virtual barriers” to the system and the I/O bus.
From a hardware point of view, the system bus is still shared, while software is jailed
in cells from where the guest software, so-called inmates, can only reach a predefined
subset of physical hardware.

Jailhouse, in contrast to all existing solutions, starts with Linux and then uses deferred
(or late) hypervisor activation [Rut06] to partition the hardware underneath the already
running Linux.5 Jailhouse piggybacks on Linux, and exploits its capabilities to do the
code-intensive heavy lifting of most of the hardware and then takes over the system.

Jailhouse is enabled by a kernel module from within a fully booted Linux system, see
Fig. 4.1. It takes control over all hardware resources, reassigns them back to Linux
according to a configuration of the system, and lifts Linux into the state of a virtual
machine (VM). The hypervisor core of Jailhouse acts as VMM. This scheme does not
fit into the traditional classification of hypervisors [Gol73] – it can be seen as a mixture
of Type-1 and Type-2 hypervisors: At the time of writing this thesis, it runs on raw
hardware like a bare-metal hypervisor without an underlying system level, but still
4Available at https://github.com/siemens/jailhouse under GPLv2.
5Rutkowska [Rut06] was the first who used this technique to inject undetectable malware (i.e., a thin
hypervisor) into computer systems.

4.2 The Jailhouse Hypervisor: Philosophy and Architecture 111

https://github.com/siemens/jailhouse

cannot operate without Linux as a system aide to provide initialised hardware. Linux is
used as bootloader, but not for operation. However, there exist first prototypes to fully
detach Jailhouse from Linux.6

Unlike other real-time partitioning approaches (e.g., PikeOS [KW07]) that aim to man-
age hardware resources and may forbid direct access by guest systems, Jailhouse only
supports direct hardware access. Instead of using complex and time-consuming (para-
)virtualisation [BDF+03] schemes to emulate device drivers and share physical hardware
resources, Jailhouse follows an exokernel-like approach [EKO95] in that it only provides
isolation (by exploiting virtualisation extensions) but intentionally neither provides a
scheduler nor virtual CPUs. As Jailhouse aims for ideal hardware partitioning, only
(few) resources that can, depending on the hardware support, not yet be partitioned in
that way are virtualised in software (Ref. Section 4.2.2).

No scheduler (and hence, no scheduling overhead) activity is required by the hypervisor,
as computing domains are statically assigned to CPUs [LDW11; SK10b]. Nevertheless,
operating systems running as guests of the hypervisor may of course implement their
own scheduling strategies. As a result of the architectural decisions, the minimality of
Jailhouse significantly reduces the code size of the hypervisor—a slim code base is a
beneficial for certifiability (cf. Req. 2).

For virtualised mixed-criticality environments, it is important to maintain real-time
capabilities by design. With static hardware partitioning, it is possible to minimise
the hypervisor overhead during operation. Motivated by maintaining real-time capa-
bilities, Jailhouse aims to implement an ideal, zero-trap partitioning hypervisor. Under
ideal conditions, there are no software interactions of guests with the hypervisor during
runtime. Hence, the intended system propagates real-time capabilities that are given by
the hardware directly to guests, and completely eliminates further OS/guest-hypervisor
interactions. Hence, the software of the VMM can not introduce further software-based
indeterminism that endanger real-time capabilities of the system architecture (cf.Req. 1).
Virtualisation extensions of modern CPUs are used to statically and exclusively assign
hardware resources to computing domains to achieve strict and safe isolation of com-
puting domains.

With respect to the cost effectiveness criteria in Section 1.1, many industrial applications
cannot give up on the capabilities and feature-richness of Linux in their systems, yet
they face increasing demands to simultaneously cope with safety or other certification
requirements that are difficult to achieve with Linux [PMB18]. Jailhouse’s architectural
approach fulfils these needs. However, it can also be considered as an ideal framework
6Discussion can be found on https://groups.google.com/g/jailhouse-dev/c/AYeZHwxGFSc/m/

NfNwyxk8BQAJ.

112 Chapter 4 Ideal Hardware Partitioning

https://groups.google.com/g/jailhouse-dev/c/AYeZHwxGFSc/m/NfNwyxk8BQAJ
https://groups.google.com/g/jailhouse-dev/c/AYeZHwxGFSc/m/NfNwyxk8BQAJ

Jailhouse

initialises

CPU0 CPU0CPU1 CPU1CPU2 CPU2CPU3 CPU3 CPU0 CPU1 CPU2 CPU4

Linux Jailhouse

Linux
Linux RTOS

Figure 4.1.: Activation sequence of the Jailhouse hypervisor. After Linux has loaded and started the
hypervisor, an additional real-timeoperating system is started in an isolated critical domain.

to ease the integration of state-of-the art research or experimental systems that solve a
specific problem in a novel way with industry-grade solutions based on Linux.

Another advantage of the approach relates to running certified payloads: Many industrial
codes are, for historical reasons, designed to run on single-core systems, and would re-
quire substantial porting efforts to leverage MC execution environments. Such changes
would demand a re-certification of the codes; likewise, a time- and cost-consuming
re-certification would be required if workloads are equipped with protection against,
for instance, Spectre-type [Koc+19; Can+18] CPU weaknesses. Executing such legacy
payloads in a partitioned cell has the advantage that the code does not require protec-
tion against said CPU weaknesses, because they are already implicitly required by the
partitioning hypervisor. When no code changes are necessary, existing certifications
can be retained, which is a clear and substantial commercial advantage.

Jailhouse consists of three main components: a Linux Kernel module that helps to
activate, control and operate the hypervisor, userspace tooling that abstracts access to
the kernel module, and the hypervisor binary, the actual core of the hypervisor.

When enabling Jailhouse, the kernel module loads the architecture-specific hypervisor
binary and a system-specific configuration to a reserved area of memory and calls the
hypervisor startup codeoneachCPU–thepoint of thehandover. Amongplatformspecific
information, the system configuration holds information on the system’s topology, such
as number of CPUs cores, memory regions, Peripheral Component Interconnect (PCI)
devices and interrupt controllers. After the hypervisor startup code is executed on each
CPU, Linux continues to run as a virtual machine and guest of Jailhouse, the so-called
root cell.

Jailhouse establishes an identity-mapped shadow page tables between the host and
Linux: the hypervisor controls the mapping of guest physical pages to host physical
pages. Virtualisation technologies (e.g., Second Level Address Translation (SLAT)) allow
trap-free access to those pages without hypervisor intervention. The same applies to
CPUs: Jailhouse will not overcommit and provide multiple virtual CPUs, Linux will
operate on the same physical CPUs as it did before activation. Jailhouse exploits further

4.2 The Jailhouse Hypervisor: Philosophy and Architecture 113

virtualisation extensions to minimise the hypervisor’s activity. Depending on hardware
support (I will later discuss that in detail) Jailhouse will directly re-route interrupts to
guests: interrupts are delivered to guests without hypervisor intervention. Support for
I/O memory management units (IOMMUs) protects guests against memory violations
by DMA-capable hardware devices.

It is hard and code-intensive for hypervisors to support the myriad of existing different
hardware in their system. Linux, on the contrary, is an extremely feature-rich operating
system concerning hardware support. Jailhouse takes this advantage and hijacks Linux.
The untypical deferred activation procedure of the VMM has the considerable practical
advantage that the majority of hardware initialisation is fully offloaded to Linux, and
Jailhouse can entirely concentrate on managing virtualisation extensions. The direct
assignment of hardware devices allows Linux for continuing executing as before. Unlike
other partitioning approaches (for instance, [LWM14]), Jailhouse does not require any
specific device drivers except for minimalist, optional debug helpers, for example, a
simple UART driver. Hence, similar to the exo-kernel [EKO95] approach, Jailhouse is
an exo-hypervisor, with the difference that the skeleton (i.e., the minimalist VMM) is
modelled by the corpus (i.e., the operating system, Linux), and not vice versa.

It is a deliberate design decision that Jailhouse does not share physical hardware re-
sources across guests. Especially in mixed-critical environments, Jailhouse makes the
realistic assumption that every computing domain is assigned to its own dedicated hard-
ware resources. To create such isolated domains (in Jailhouse lingua called non-root cells),
Jailhouse removes hardware resources (e.g., CPU(s), memory, PCI or MMIO devices)
from Linux and reassigns them to the new domain. Similar to the system configuration,
topological information of non-root cells are specified in cell configurations that describe
the assigned resources.

Linux releases the hardware if it has previously been in use, offlines selected CPUs
and calls the hypervisor to create the new cell. This includes physical CPUs that are
assigned to the new domain: the configuration of a partition consists at least of one CPU
and a certain amount of memory. The cell inmate, a secondary operating system or a
bare-metal application, can be preloaded by the root cell before the domain is started
(kicked off). While cells may share memory regions, subsequent memory access by the
root cell can, of course, be disallowed by the hypervisor, which prohibits inadvertent
modifications. Other resources, like PCI devices, MMIO devices or I/O ports, can be
exclusively reassigned to the new guest as well. Non-root cells can dynamically be
created, destroyed (i.e., resources are assigned back to the root cell) or relaunched.

Virtualisation extensions (See [ARM13a; AMD05; UNR+05] for the four major architec-
tures ARMv7 with Virtualization Extensions (VE), ARMv8, Intel® 64-bit x86 with VT-x

114 Chapter 4 Ideal Hardware Partitioning

and VT-d support, as well as amd64 with SVM support) guarantee spatial isolation: any
access violation, for instance illegal access across partitions, traps [PG74] the hypervisor,
which eventually stops the execution of the faulting CPU. Certain instructions executed
by guests cause traps and must be handled by the hypervisor.

Since Jailhouse only remaps and reassigns resources, the ideal design conception is that –
besidesmanagement – it does not need to be active after setting up and starting all guests,
and only intercepts in case of access violations: “Look Mum, no VM Exits!” [Ram+17].

However, hardware is not (yet) perfectly suited for this approach, so on current hardware,
the following circumstances still require intervention by the VMM:

• Interrupt reinjection (depending on the architecture, interrupts may not directly
arrive at guests)

• Interception of non-virtualisable hardware resources
(e.g., parts of the Generic Interrupt Controller (GIC) on ARM)

• Access of platform specifics (e.g., accessing Control Coprocessor 15 (CP15) or Power
State Coordination Interface (PSCI) on ARM)

• Emulation of certain instructions (e.g., cpuid on x86)

The following traps are unavoidable, and not contrary to the concept, as they only occur
in case of jailbreak or cell management:

• Access violations (memory, I/O ports)

• Cell management (e.g., creating, starting, stopping or destroying cells)

These interceptions introduce overhead and latencies – virtualisation, of course, comes
at a cost. Even if there were no exits, a second-level page table walk, for example,
introduces additional latencies for memory access [Dre08]. In Section 5.2, I exemplarily
present the evaluation of fundamental microbenchmarks: the additional latency of
interrupt reinjection on ARMplatforms, and the influence of mitigations for Spectre-like
attacks [Sch+19a; Min+19; Van+18; Wei+18; Lip+18; Koc+19; Can+18] that partly base on
hypervisor intervention.

Despite the strict segregation of resources across guests, Jailhouse still allows cells
to share physical pages. Besides enabling inter-cell communication, the mechanism
also allows for sharing MMIO pages, which, if desired, allows for accessing hardware
resources from within multiple domains. Such concurrent access is, however, not
arbitrated by Jailhouse and needs to be addressed appropriately by the guests.

4.2 The Jailhouse Hypervisor: Philosophy and Architecture 115

Physical Memory

Peripherals

System Bus

Processing Units

virtual ethernet link

Linux Linux RTOS shmem VMM

CPU0 CPU1 CPU2 CPU3

UARTI/O ETHI/O SPII/O I2CI/O GPIOI/O

Figure 4.2.: Ideal Hardware Partitioning: Hardware is fully, partitionable; there are no shared resources.

Physical Memory

Peripherals

System Bus

Processing Units

virtual ethernet link

Linux Linux RTOS shmem VMM

CPU0 CPU1 CPU2 CPU3

DMAI/O UARTI/O ETHI/O SPII/O I2CI/O GPIOI/O ClocksI/O

Figure 4.3.: Hardware Partitioning on Real Hardware: Certain devices (e.g., DMA or clock devices) are
not fully partitionable; sharing must either be avoided or requires moderation.

Fig. 4.2 and Fig. 4.3 show a possible partitioned system layout for three cells: the Linux
root cell (white), an additional Linux non-root cell (light gray) and aminimalist real-time
operating system (orange). The left Fig. 4.3 shows an ideal setup: devices are not shared
across domains. However, hardware limitations prevent ideal conditions under certain
circumstances (Ref. Fig. 4.2). Those exceptional cases are discussed in Section 5.1.

Communication between cells is realised by shared memory regions, together with a
signalling interface. This minimalist design requires no additional device driver logic in
the hypervisor. Depending on the hardware support, it is implemented based on a thin
virtual PCI device through Message Signalled Interrupts (MSI-X) or legacy interrupts.
A guest may use this device to implement, for example, a virtual ethernet, block, or
console device on top of it. On systems without PCI support, Jailhouse emulates a
generic and simple PCI host controller. Emulation is chosen in this case, as PCI provides
a configuration space: The PCI device identifies itself and its capabilities. This enables, if
supported, automatic configuration in guests, and the virtual PCI host controller results
in only six lines of code and does not increase the overall code size.7

7https://github.com/siemens/jailhouse/commit/7b9f373dcfc14a4951928c43ded9c02b9f1ac02c

116 Chapter 4 Ideal Hardware Partitioning

https://github.com/siemens/jailhouse/commit/7b9f373dcfc14a4951928c43ded9c02b9f1ac02c

4.2.2 Hardware and Software Support

Architectures Jailhouse supports four different architectures. On x86, Jailhouse sup-
ports Intel® x86 64-bit with VT-x and VT-d support [Int19b; UNR+05], as well as amd64
with SVM [AMD05] support. On ARM platforms, Jailhouse supports 32-bit ARMv7 with
virtualisation extensions (VE) [ARM13a], and 64-bit ARMv8 [ARM20a] platforms. It
is worth mentioning that despite the fact that Jailhouse supports four different CPU
architectures, which goes beyond what is provided by many experimental or research
systems, its minimalist approach results in only a few thousands lines of code for the
core parts. This simplifies certification processes, but allows developers to concentrate
on important issues without spending time on providing a never complete number of
device drivers that are required to make the system usable in realistic environments.
The simplicity of the core is a good basis for a formal verification of the hypervisor,
similar to the formal verification of related system software [Kle09].

Operating Systems Several operating systems apart from Linux are already available
as Jailhouse guests (L4 Fiasco.OC on x86 [Bar16], FreeRTOS on ARM, Erika Enterprise
RTOS v3 on ARM64). The Real-Time Executive for Multiprocessor Systems (RTEMS) real-
time operating system for the ARM architecture has already been successfully ported
with very limited effort – modifications are mostly required for platform specific board
support. The simplicity of porting systems suggests an opportunity to expose feature-
incomplete research approaches to realistic industrial use-cases by combining themwith
an industrial grade base. Besides running existing common operating systems, Jailhouse
provides an own inmate library that allows for running minimalist applications.

4.3 Cross-domain Protection Against Speculative Execution
Exploits

A strong industrial requirement for real-world systems is that unwanted, unintentional
interference between domains of different criticality must be absent, that is, the sys-
tem must guarantee freedom from interference. In many scenarios, freedom from
interference must also guarantee the unintended leakage of data from neighbouring
domains.

The class of recently discovered attacks on speculative execution [Sch+19a; Min+19;
Van+18; Wei+18; Lip+18; Koc+19; Can+18] that have not only received substantial aca-
demic consideration, but have even reached the attention of the general public, high-

4.3 Cross-domain Protection Against Speculative Execution Exploits 117

lights the risks of hardware resource sharing, particularly when workloads of mixed
criticality are scheduled on the same physical execution unit. All variants of the above-
mentioned speculative execution attacks are, roughly speaking, side-channels on specu-
lative execution of CPUs sided by timing attacks on CPU caches [GBK11; YF14; OST06].
They open a covert channel which can be used to leak confidential data between pay-
loads of different criticality by the exploitation of fundamental CPU primitives. This
violates or subverts many guarantees that are given by formerly trusted hardware units
on which architectures of mixed-criticality solutions usually rely upon.

Performance, throughput and efficiency of almost all modern CPUs rely on aggressive
microarchitectural optimisations. Pipelining, speculative execution and out-of-order
execution are prominent and effective optimisation techniques.

Out-of-order execution allows single CPUs to efficiently reorder instructions to achieve
an optimal utilisation of the CPU pipeline. CPU pipelines allow parallel execution of
different stages of multiple independent instructions. Branch prediction is a speculative
execution technique, to achieve optimal utilisation of the CPU pipeline. A CPU that
implements branch prediction speculatively executes instructions in advance of condi-
tional branches with yet unknown results. It may execute instructions that, in the end,
may not be needed or that are not allowed. High utilisation of all execution units in paral-
lel is one of the elementary reasons of the high performance of modern CPUs. However,
those techniques can be counterproductive in real-time environments [Cul+10].

Naturally, speculative execution inherently leads to erroneous decisions. Thus, executed
mispredictions are transparent to users as they are rolled back to preserve an accurate
external state. However, they leave microarchitectural traces in the internal state of the
CPU that open potential covert channels. Misdirection in combination with internal
state analysis allows an attacker conclude the external state of the CPU. In 1995, Sibert
et al. point to the potential existence of such microarchitectural state dependent covert
channels [SPL95].

Two decades later, in the beginning of 2018, researchers [Lip+18; Koc+19], independent of
each other, present awhole new class ofmicroarchitectural attacks: the family of Spectre
attacks. Since then, many researchers found newmethods or variations of attacks on
speculative execution of CPUs to leak otherwise protected, unreachable information.

All Spectre attacks and their variations violate fundamental guarantees on the confiden-
tiality of data that is given by (core-local) protection mechanisms of a CPU. Software
based solutions in operating systems and system firmware, as well as processor mi-
crocode updates are required to mitigate attacks. Many of those numerous mitigations
are cost-intensive, and endanger the real-time capabilities of a system.

118 Chapter 4 Ideal Hardware Partitioning

In the following, I will give an overview of speculative execution attacks (i.e., Spectre,
Meltdown, Foreshadow and Microarchitectural Data Sampling (MDS)), and analyse
their impact on real-time systems in general, as well as on static and ideal hardware
partitioning in particular. Later, in Section 5.2.4, I will evaluate and quantify their impact
on selected systems.

4.3.1 Attacks and Mitigations

Spectre One pattern of Spectre attacks is to mislead execution units to perform de-
pendent loads. Transient execution attacks [Koc+19] try to speculatively load memory
where the address depends on the offset of a secret (dependent loads). This intentional
misguidance leads to mistaken speculative execution and the external state is rolled
back. While this preserves external consistency, attackers can draw conclusions on the
secret by analysing the internal state that was modified by the execution of transient
instructions. Many attacks analyse the state of caches to leak information on the in-
ternal state: evaluation of memory access time (e.g., FLUSH+RELOAD attacks [YF14])
to adjacent memory cells can be used test if data is present in caches. A valid cache
line can be loaded through a transient execution. The number of the warm cache line
carries the original secret.

Those attacks are mitigated by CPU microcode and system firmware updates that in-
troduce speculation barriers, by compiler-assisted conversion of indirect branches to
return statements, and by OS-based protection against speculation on user-controlled
data in kernel space and others.

Meltdown A similar attack is Meltdown [Lip+18] (aka. Spectre v3 or Rogue Data Cache
Load). It exploits out-of-order execution to bypass illegal memory access to areas pro-
tected byMMUs onmany Intel® and ARMprocessors. While access to protectedmemory
will cause an exception, out-of-order execution bypasses MMU-based protection mecha-
nisms. Again, the secret can indirectly be used to warm up a cache line that remains as
an artefact of the internal microarchitectural state. Meltdown is able to leak data from
present, but protected privileged pages (e.g., data from kernel space).

For performance reason, many operating systems share the same page table for user
and kernel space. Kernel space pages are marked as privileged and not accessible from
user space. This saves cost-intensive page table switches on privilege level switches.
Meltdown overcomes this security barrier.

4.3 Cross-domain Protection Against Speculative Execution Exploits 119

It is mitigated by Page Table Isolation (PTI), the isolation of user-space and kernel-space
pages. The page tables that are used in user-space only contain a minimal mapping of
privileged kernel-space code that is required to hand over to the actual kernel-space
mapping: A second mapping that, besides user pages, contains a full visibility of the
kernel-space. This requires page table switches on every privilege level switch.

Foreshadow / L1TF Foreshadow [Van+18] and Foreshadow-NG [Wei+18] are attacks on
Software Guard Extensions (SGX) and MMUs of modern Intel® CPUs. Foreshadow allows
to read secret data from SGX enclaves, and Foreshadow-NG (also known as L1TF or Level
1 Terminal Fault) allows to read any data from the core-local level 1 cache. Foreshadow-
NG exploits additional design flaws of MMUs: Intel® MMUs speculatively use physical
addresses of invalid page table entries (i.e., entries with cleared ’present’-bit). Intel® is
hypothesised to ”implement L1 tag comparison in parallel with the address translation
process for performance reasons” [Wei+18]. While access to invalid page table entries
raises an exception (i.e., Terminal Fault), the data of the L1 cache is already used for
transient out-of-order execution of the following instructions. Analogously to other
microarchitectural attacks, change of the internal microarchitectural state is used to
leak secrets. L1TF is able to leak any data that is present in the core-local L1 Cache.

User-space processes may speculate on previously available pages that are not present
(e.g., swapped pages). Operating systems running as virtual machines are able to (a)
leak data from the hypervisor and (b) leak data from other virtual machines that are
scheduled on the same core and leave data traces in the L1 cache. Secrets can also leak
through neighbouring SMT siblings as they share the L1 cache.

To mitigate L1TF, operating systems implement Page Table Entry (PTE) inversion and
conditional cache flushes. PTE inversion applies a bitmask to the physical address of
unpresent pages with the intention to point to invalid physical addresses. This protects
operating systems from users that speculate on unpresent pages. To protect hypervisors
against malicious virtual machines, and to protect virtual machines against each other,
operating systems implement (expensive) conditional L1 cache flushes on privilege level
switches. A full prevention of cross-VM exploits requires to disable SMT.

Microarchitectural Data Sampling Rogue In-Flight Data Load (RIDL) and Fallout present
MDS attacks that target CPU-internal buffers (e.g., Store Buffer, Fill-Buffer or Load-Port)
of Intel® CPUs. During its execution, a victim process utilises CPU internal buffers with
private data. Later, the scheduler of the operating system replaces the victim process
with the attacking process. ”When the attacker also performs a load, the processors

120 Chapter 4 Ideal Hardware Partitioning

speculatively uses in-flight data from the Line Fill Buffers (LFBs) (with no address-
ing restrictions) rather than valid data” [Sch+19a]. Covert channels, for example the
FLUSH+RELOAD attack, finally reveal the secret of the victim process.

Recent Intel® CPUmicrocode versions patch instructions to perform flushes of various
exploitable internal CPU buffers. For virtualised environments, an alternative, yet more
cost-intensive mitigation are L1D cache flushes. Nevertheless, this is the preferred
mitigation for systems that are vulnerable to L1TF, as they need to conditionally flush L1
caches on the same paths in either case. ”The mitigation is invoked on kernel/userspace,
hypervisor/guest and C-state (idle) transitions.” [KRNL20]

While store buffers are partitioned across SMT threads, entering or leaving sleep states
repartitions the buffers and data can be exposed between SMT threads. Depending
on the workload, full mitigation requires SMT to be disabled as fill buffers are shared
between SMT threads. [Kle19]

4.3.2 Jailhouse and Speculative Execution Attacks

All known speculative execution attacks exploit CPU-local interfaces. At the time of
writing, there are no known speculative execution attacks across physical CPU bound-
aries. To attack the victim, it needs to temporarily share the same core with the attacker.
Naturally, CPUs can not leak data they do not know or data they never see.

To isolate domains of different criticality, Jailhouse exclusively and statically assigns
CPUs to its guests, that is, to different execution domains. By design, Jailhouse does not
schedule domains. It has no means built in to share a physical CPU between multiple
guests. This differentiates Jailhouse significantly from conventional hypervisors that
are used in cloud environments.

This fundamental architectural decision provides a strong cross-domain protection layer
against speculative execution attacks. Nevertheless, the following scenarios have to be
carefully assessed: (a) Inter-Guest attacks, and (b) Attacks on the hypervisor.

Inter-Guest Attacks While Jailhouse does not schedule guests, a guest (e.g., an operating
system) may, of course, schedule different processes. Hence, malicious code can be
used to leak secret information of other processes of the same execution domain.

Nevertheless, if a domain needs protect itself against attacks from within the domain,
the operating system can implement countermeasures as it would otherwise be required
on a regular VMM-less bare-metal configuration as well. On the ARM64 architecture,

4.3 Cross-domain Protection Against Speculative Execution Exploits 121

speculation barriers are implemented by the secure monitor running in Exception Level
3 (EL3) [ARM20b] (the hypervisor runs in the lesser privileged Exception Level 1 (EL1)):
A context switch from EL1 to EL3 acts as speculation barrier. Calls from EL1 (OS / kernel)
of a guest to EL3 require interception and moderation by the hypervisor. On affected
ARM64 platforms that implement secure monitor-based speculation barriers, Jailhouse
calls anti speculation barriers on every trap. If a guest decides to implement mitigations,
the hypervisor - besides the secure monitor - causes additional latency for forwarding
the mitigation. A precise evaluation of the effects of those mitigations will be given in
Section 5.2.4

However, based on the threat model of a specific domain, it is the decision of the guest
whether further inter-guest mitigations are required. If a guest does not require mitiga-
tion of Spectre attacks, the existence of the hypervisor will not cause any overhead.

Hypervisor Attacks One design goal of Jailhouse is to setup hardware partitioning, which,
ideally, requires no further hypervisor interception during regular operation. Conceptu-
ally, the hypervisor should only be active during its boot and partitioning phase, and
only handle unrecoverable critical exceptions during its operational phase. In an ideal
trap-free setup, the hypervisor will never get active in the operational phase.

This means that the architecture of Jailhouse inherently provides strong protection of
the hypervisor: speculative execution attacks can only work in cases, where the victim
actively triggers higher execution levels to execute code, which leaves traces in the
microarchitectural state. Hence, there is no threat for a zero-trap hypervisor, as it will
only get active in critical, unrecoverable situations.

While the zero-trap goal is already achieved for some use cases on Intel® x86 systems, it is
generally limited by current hardware support (Ref. Section 4.1). However, to implement
Jailhouse on common architectures, the hypervisor needs to intercept or moderate
certain situations that depend on the target architecture’s virtualisation capabilities.
Furthermore, Jailhouse implements a slim synchronous hypercall interface for manage-
ment tasks. This involves hypervisor activity that can potentially be used in speculative
execution attacks. This attack surface requires careful assessment.

A CPU can only leak what it can see. In case of Jailhouse, this is includes its binary code,
configuration, and sensitive guest state information. As the hypervisor is developed as
an Open Source project, hypervisor binary code does not need protection. The system
configuration contains partitioning information and information on the platform’s
topology. This does not contain secret data that needs further protection.

122 Chapter 4 Ideal Hardware Partitioning

Malicious guests may use or even synchronously control hypervisor activity to prepare
for speculative execution attacks. By design, Jailhouse only exposes a minimum attack
surface to guests as it only maps a small subset of guest pages into its address space that
is required to perform its duties. Jailhouse maintains isolated core-local address spaces
and does not share CPU private pages across CPUs. Core-local CPU state is not visible to
other CPUs. Only a small set of uncritical management information (e.g., the hypervisor
state) is shared across all CPUs. Because of its simplicity, address space isolation was
implemented with reasonable effort. At the time of writing this thesis, Linux’s Kernel-
based Virtual Machine (KVM) undergoes efforts of implementing a similar isolation
strategy.8

The design of Jailhouse prevents leakage of sensitive hypervisor data across domains.

Attacks on SMT SMT is a further technique to optimally utilise available hardware re-
sources. SMT transparently exposes multiple logical CPU interfaces to users, while parts
of the underlying physical units are still shared (e.g., L1 caches). Execution units can be
shared or duplicated between logical threads.

Sharing of execution units may lead to mutual contention between different threads.
While SMT increases overall performance and throughput of a system, contention causes
unintended latencies, which have negative impact on the real-time behaviour of systems.
Hence, I share the opinion of [PRT20] and [Rie16] to disable SMT in any case, in order to
maintain real-time capabilities.

However, if SMT remains active, logical threads are vulnerable to attacks that exploit
shared execution units or shared caches. Hence, I recommend to only allocate threads
of physical CPUs to the same execution domain. It is then the decision of the guest if
further inter-guest OS-based mitigations are required.

In any case, in the Jailhouse architecture, all secret information remain in guests on
isolated CPUs. Under ideal conditions, no secrets remain in the hypervisor.

In Section 5.2.4, I will investigate the cost of mitigations for spectre-like attacks on bare-
metal real-time systems in general, and on virtualised environments in particular.

8See https://lkml.kernel.org/lkml/20190514070941.GE2589@hirez.programming.kicks-ass.net/
T/.

4.3 Cross-domain Protection Against Speculative Execution Exploits 123

https://lkml.kernel.org/lkml/20190514070941.GE2589@hirez.programming.kicks-ass.net/T/
https://lkml.kernel.org/lkml/20190514070941.GE2589@hirez.programming.kicks-ass.net/T/

Evaluation and Discussion 5
„Controlling complexity is the essence of computer

programming

— BrianW. Kernighan
Computer Scientist

5.1 Hypervisor Activity

The goal of Jailhouse is to achieve an ideal, zero-trap hypervisor. However, features of
current state-of-the-art hardware architectures and platforms do not yet provide full
support to achieve this goal in all situations. Depending on the architecture, there exist
different circumstances where the hypervisor needs to intervene. In this section, I
analyse remaining hypervisor activity.

I will investigate different types of hypervisor activity, and their impact on real-world
applications. The measurements serve as a reference for real-world deployments of
the hypervisor. They assist to assess the suitability of the approach in real-world appli-
ances.

5.1.1 Common Hypervisor Activity

On all target platforms, it is obvious that VMM activity is inherently required during
the startup and the partitioning phase. For domain management, Jailhouse uses a
thin hypercall interface. In the following, I will explain situations where hypervisor
intervention is required, and differentiate between unique hypervisor intervention
during the startup, and hypervisor intervention when the system is in an operational
phase.

On all architectures, it is unavoidable that the hypervisor moderates access to certain
MMIO regions. On real-world systems, two separate hardware devices are frequently
located on the same physical page, and if both devices are assigned to separate domains,

125

the hypervisor must moderate the access, as the page size is the finest granularity for
trap-free memory assignment to a cell. All platforms share this issue to some extent,
violating Requirement 1: Logical Device Partitioning in Section 4.1.3. To overcome
such obstructive platform topologies, Jailhouse implements the proposed workaround—
subpaging.

5.1.2 Hypervisor Activity on x86 Platforms

While some real-world workload types already achieve zero-traps on x86 platforms,
other workloads may lead to hypervisor activity: on x86, the hypervisor needs to trap
MMIO-based access to the Advanced Programmable Interrupt Controller (APIC), as
the hypervisor must ensure that no other domains will be affected by the access, for
example, a domain must not be allowed to send IPIs to neighbouring domains. As the
APIC has no built-in means to understand the semantic of partitioned hardware, access
needs to be moderated by the hypervisor.

However, somehypervisor activity due to themoderation of access to interrupt controller
registers via MMIO can be avoided by the use of the almost trap-free MSR interface if
the platform provides the successor of the xAPIC – the x2APIC. The MSR interface of
the x2APIC provides register-granular direct guest assignment. The reason for, and an
evaluation of remaining hypervisor activity (access to the ICR register of the APIC) will
be quantified in Section 5.2.3. The occurrence of those exits depends on the workload
type, and is bypassable in domains with one exclusive core.

There are two further MSRs that require moderation by the hypervisor: Writes to Page
Attribute Table (PAT) and Memory Type Range Register (MTRR). Those are registers
to control caching attributes of memory ranges. The occurrence of access to PAT and
MTRR typically only occur once during the boot-phase of secondary guests and hence
introduce negligible overhead.

Besides MSR and MMIO, x86 provides yet another PIO interface to control peripheral
devices: port-mapped I/O (PMIO)—a relic from a distant past. In early ages of the x86
architecture, address space was limited, and memory was an esteemed resource. PMIO
introduced a secondary address space with dedicated use for device I/O in order to save
physical address space. x86 is an architecture that is well-known for accumulation of
legacy issues for over four decades. In this manner, and in the era of memory plethora,
PMIO is still excessively being used for controlling platform-specific peripherals. Among
platform UARTs, PS/2 keyboard, and real-time clocks, PMIO is used for accessing the

126 Chapter 5 Evaluation and Discussion

PCI configuration space. While virtualisation extensions allow for selective direct as-
signment of ports to guests, access to, for example, the PCI configuration space must be
moderated in order to limit the scope of visible PCI devices of a domain.

This applies to all methods of conduction (e.g., purely MMIO-based access to the config-
uration space on ARM architectures), as access to the PCI configuration space exposes
control over all PCI devices on the bus. The hypervisor must ensure that only devices
within the domain’s scope are accessed, and it must prohibit changes of PCI capabilities
that can affect other domains (e.g., power management settings).

The x86 instruction cpuid discovers the type and features of a processor. It is used by
virtualised guests to discover the type of a hypervisor. Hence, Jailhouse traps execution
of this instruction and presents its existence to the guest. cpuid instructions typically
do not occur in the operational phase of the system. It is worth mentioning that cpuid
can be used as a debugging instruction, as it is executable in user-space but directly
traps to the hypervisor without prior activity of the OS.

Non-maskable interrupts (NMIs) arrive at the hypervisor and cause additional activity
of the VMM. The hypervisor will then reinject the NMI to the guest. NMIs only occur
under rare conditions and signalise a severe hardware condition (e.g. chipset or Error-
Correcting Code (ECC) memory errors). A delay of the propagation of a NMI does not
additional dangers to the system, as the safety strategy of a system must include the
transition to a safe state in case of system failures.

The alignment check (#AC) is an optional feature on x86 systems. An exception is thrown,
when the processor detects an unaligned memory operand. While this exception can
conditionally be caught by the hypervisor, CVE-2015-5307 enforces hypervisors to trap
on the exception. An infinite stream of #AC exceptions caused by a malicious guest
causes the microcode to enter an infinite loop. No other interrupts will arrive at the
core. Jailhouse implements the same strategy as KVM, to unconditionally trap on #AC.1

This will only have an effect on cores that execute a malicious guest.

On x86, the CR0 register is used to globally (de-)activate cache. It is obvious, that
access to those registers must be moderated. Additionally, the CR4 registers contains
information of the existence of a VMM, and Jailhouse will present its existence to guests.
Hence, access to those registers is trapped. The xsetbv instruction on x86 is used to set
extended control registers—registers that control arithmetic extension of the processors,
such as Streaming SIMD Extensions (SSE) or Advanced Vector Extensions (AVX). The
execution of this command causes a trap to the hypervisor, which will forward the
1Ref. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=

54a20552e1eae07aa240fa370a0293e006b5faed.

5.1 Hypervisor Activity 127

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=54a20552e1eae07aa240fa370a0293e006b5faed
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=54a20552e1eae07aa240fa370a0293e006b5faed

request. xsetbv instructions typically only occur during the boot phase of the system,
and not in the operational state. The abovementioned instructions are examples that
violate Requirement 3: PlatformResource Partitioning, and Requirement 4: Cross Core
Independence.

5.1.3 Hypervisor Activity on ARM Platforms

ARM platforms share architectural limitations mentioned in Section 5.1.1 on MMIO-
based devices that are located at the same physical page. Additionally, devices on
ARM platforms can have inner fragmentation: System often contain unpartitionable
platform controllers, such as clock or reset controllers. Clock controllers are used to
adjust speed and frequency of a peripheral device (e.g., for setting the frequency of
SPI devices). Reset controllers are used to specifically reset single devices within a
platform. Those, often hierarchically organised platformmanagement controllers are
contiguously mapped to MMIO address space, and suffer from inner fragmentation:
Depending on the specific implementation of the controller, peripheral devices are often
controlled with single bit operations within the controller. Furthermore, devices or reset
lines can be hierarchically organised in groups, and modifications can have cascading
effects on the whole platform across domains, violating Requirement 2: Hierarchical
Autonomy of Devices

However, isolation criteria require that a domain must not have any side effects to other
domains. On recent platforms, Jailhouse implements two possibilities to overcome this
issue. In the Configure & Freeze-approach, the root-cell will configure all devices of
the platform to the state that is later required in the operational phase. After the setup,
the state of the controller is frozen: the hypervisor will prevent subsequent access to
platform controllers. This approach is suitable for systems, where clocks do not require
further adjustment in the operational phase. The alternative is to implement a thin
paravirtualised layer in the hypervisor that implements the semantic of the specific
underlying platform controller, and moderates access.

In addition to that, the hypervisor needs to address the interrupt system of ARM plat-
forms: besides vendor-specific interrupt controller designs, ARM provides generic
specification for interrupt controllers. Jailhouse supports the broadly used GICv2 and
GICv3 specification. Both specifications require to reinject external interrupts: Inter-
rupts will first arrive at the hypervisor, and need reinjection to the guest. I will discuss
and evaluate this architectural limitation in detail in Section 5.2.2. The specification of
future versions of the GIC [ARM16] address this limitation and implement support for
interrupt remapping, which is beneficial for the proposed approach.

128 Chapter 5 Evaluation and Discussion

For IPIs, ARM platforms use software generated interrupts (SGIs) that are issued via
the GIC. Similar to x86 platforms, the hypervisor must ensure that the SGI does not
address a CPU interface outside the scope of the domain. Hence, access to the interrupt
distributor requires interception and moderation.

On ARM platforms, the PSCI firmware runs at highest privilege level. It is used for
platform control, for example, to enable or disable secondary CPUs. As a side effect
and as later explained in Section 5.2.4, firmware calls can also be exploited to mitigate
Spectre v2, as they implicitly act as speculation barriers. The hypervisor will trap on
firmware calls that are issued by the guest, as it must ensure that firmware calls do
not address resources outside the scope of the domain. However, if the guest does not
requiremitigations against Spectre (Ref. Section 5.3.3 whymitigations are not required in
many scenarios), firmware calls are typically not conducted in the operational phase.

On 32-bit ARM platforms, the hypervisor must intercept access to the platform co-
processor (CP15), as access to registers of the CP15 may have effects across domains.

While there are still various reasons for the hypervisor to intervene in certain situations,
most trap types do not occur in the operational phase of the system and are especially
required during the boot phase of systems. Additionally, Jailhouse is able to achieve zero
traps for real-world scenarios under x86 and it can be observed that future hardware
extensions are beneficial to achieve zero traps in partitioned setups (e.g., GICv4).

5.2 Evaluation

An important industrial requirement on real-world systems is that it must be possible
to guarantee (under a reasonable definition of assurance) that partitioning implies the
maintenance of determinism within a computing domain and freedom from interference
between the partitioned domains.

Not only on partitioned or virtualised, but also on conventionally scheduled systems,
the surface of potential cross-domain interference is determined by the degree of in-
teraction between different computing domains. This includes interactions between
tasks, tasks and operating systems, operating systems and an underlying hypervisor,
and interference of the system’s firmware (e.g., non-maskable interrupts caused by
System Management Interrupts (SMIs) or firmware-assisted mitigations for Spectre-like
attacks).

As mentioned before, the aim of Jailhouse is to implement ideal hardware partitioning,
and hence to eradicate the activity of the hypervisor during operation. Though this

5.2 Evaluation 129

would be possible in theory, the sole existence of a hypervisor introduces additional
latencies [Dre08] that do not exist without a VMM. For example, shadow page tables
may introduce additional memory access latencies because of additional steps in the
page table walk in case of Translation Lookaside Buffer (TLB) misses.

To evaluate and determine the (real-time) performance of the hypervisor, several en-
vironmental conditions must be considered. It is hard or even impossible to quantify
the hypervisor overhead with one single scalar. This results in a set of microbench-
marks that serve as a basis for a specific decision on the qualification of the system’s
architecture.

For all benchmarks, single-shot measurements do not allow to draw any conclusions
on the behaviour of the system. Microbenchmarks should be repeated under certain
environmental conditions, such as the actual existence of a hypervisor, and the particular
frequency of a certain measurement together with variations of the utilisation of other
guests [Mau+21].

Next, I describe considerablemeasurements andpresent threequintessentialmicrobench-
marks and compare different platforms: the hypervisor-induced interrupt latency on
an ARM platform, the moderation of the ICR register of the interrupt controller of x86
platforms, and the impact of Spectre mitigations on virtualised systems. These are three
sources of workload-dependent hypervisor activity and hence, hypervisor noise.

5.2.1 Hypervisor Overhead

The following paragraphs give an overview of potential sources of interference and
noise. It is important to remark that benchmarks do not measure the overhead of the
hypervisor, but the overhead of the hypervisor when running on a specific hardware
platform. Nevertheless, those measurements give insights of the impact due to the
existence of a VMM.

Hypercalls One typical benchmark for hypervisors is the cost of hypercalls, as hypercalls
are oftenused to implement paravirtualisation of devices. In case of Jailhouse, hypercalls
do not need to be considered, as they are only used for cell management purposes, and
never occur in the operational state or in hot paths.

130 Chapter 5 Evaluation and Discussion

SharedSystemBus Jailhouse implements anAMPsystem. Different guests asynchronously
access memory, and memory or I/O access may be serialised by hardware. Though
starvation does not occur on supported architectures, heavy utilisation ofmemory or I/O
busses may lead to significant slow downs of guests. While this problem is well-known
for SMP applications, its impact must be evaluated when asynchronously executing
multiple payloads that were designed for single-core platforms.

Interrupt Latency While on x86 architectures, VT-dallows for direct trap-free remapping
of MSI-X interrupts to guests [Int18b], many ARM platforms miss equivalent exten-
sions. While some ARM64 platforms support Software Delegated Exception Interface
(SDEI) [ARM17], an extension that can be exploited to implement trap-free interrupt
injection to guests, it is practically not available for 32-bit ARM platforms–interrupts
must be reinjected by the hypervisor. I measure the overhead of the reinjection in
Section 5.2.2.

Architecture-dependent Traps Because of architectural limitations, Jailhouse needs to
emulate devices that are essential for a hardware platform and that cannot be virtualised
in hardware, such as the interrupt distributor as part of the GIC in ARM architectures, or
the ICR, as part of the interrupt controller on modern Intel® x86 platforms. Depending
on the utilisation of those devices, the impact of the hypervisor must be analysed.

In Section 5.2.3, I quantify the latency overhead that is caused by hypervisor activity
that is required to moderate accesses to the ICR on a modern Intel® platform.

Mitigations for Spectre-like Attacks Mitigations for Spectre-like attacks heavily rely on
measures by system software and firmware, as well as updates for CPU microcode. For
example, Meltdown enforces operating systems to isolate user and kernel address space
to separate page tables, which is a cost-intensive change, as it requires TLB flushes
on context switches. As mentioned before, in case of TLB misses, the existence of a
hypervisor introduces additional paging layers, which, in turn, leads to higher latencies
for page table walks.

Other platforms require assistance of the system’s firmware to mitigate the attack
surface. To mitigate, for example, CVE-2017-5715 (Spectre v2) [Koc+19], ARM64 plat-
forms [ARM20b] implement a firmware-based workaround. The OS conducts a pseudo
firmware call (i.e., Secure Monitor Call (SMC)) that, as a side effect, results in a specula-
tion barrier. However, a firmware call by a guest OS is trapped by the hypervisor which
needs to moderate and forward the call to the firmware interface. Jailhouse implements

5.2 Evaluation 131

a fast dispatcher path for these kind of SMC calls. Nevertheless, those traps introduce
additional latencies when speculation barriers are conducted.

As a base-line I present the impact of Spectremitigations on conventional non-virtualised
real-time systems, as well as their impact on virtualised, partitioned environments in
Section 5.2.4.

In the following, I provide three quintessential microbenchmarks for four different
platforms in total. I measure specific aspects of the overhead that is introduced by the hy-
pervisor onmodern Intel® x86 platforms (Intel® Xeon® E5-2683 v4 and a Intel® Xeon® Gold
5118) platform, a 32-bit ARMv7 platform (Nvidia Jetson TK1) and a 64-bit ARMv8 platform
(Nvidia Jetson TX1).

5.2.2 ARM: The Cost of Interrupt Reinjection

Jailhouse supports two versions of ARM’s Generic Interrupt Controller, GICv2 and
GICv3 [ARM13b; ARM16]. Both implementations share the same architectural limi-
tation: Interrupts do not directly arrive at the guest. They arrive at the hypervisor, and
are then reinjected as virtual Interrupt Requests (IRQs) to the guest. This leads to an
overhead in the hypervisor, as it must redirect the interrupt to the appropriate guest,
followed by a switch of the privilege level.

1 ve c to r s :
2 b __ r e s e t _ en t r y
3 b vec to r_unde f
4 b vec to r _ s v c
5 b vec to r_pabt
6 b vec to r_dabt
7 b vector_unused
8 / / b v e c t o r _ i r q
9 / / b v e c t o r _ f i q

10 mov r3 , #0 xd000
11 mov r2 , #0
12 movt r3 , #0 x6000
13 s t r r2 , [r3 , #0 x520]
14 b v e c t o r _ i r q

Listing 5.1: Fast IRQ response: Only four
instructions are required to
respond to the interrupt, that
is, to toggle a GPIO.

My automated measurement setup consists of
an Nvidia Jetson TK1 (quad-core Cortex-A15
@2.32GHz) as target platform, and an AVR mi-
crocontroller for performing the actual mea-
surement.

TheAVRperiodically toggles a general purpose
input/output (GPIO) pin on the target board
which causes an interrupt. The only task of the
measurement binary is to answer as soon as
possible to the interrupt by toggling a second
GPIO that is connected to the AVR. Therefore,
I implemented a minimalist application that
uses Jailhouse’s own inmate library.2 To min-
imise code size for the response to make it as
fast as possible, the instructions for toggling
the GPIO are directly written in assembler in
the interrupt vector table (cf. Listing 5.1).
2That is, a minimalist runtime environment for guests.

132 Chapter 5 Evaluation and Discussion

Any arriving IRQ will toggle the GPIO before the interrupt is actually dispatched and
acknowledged. As no other interrupts than the GPIO IRQwill arrive, it will not introduce
spurious answers. To measure the response latency, I compare the bare-metal latency
(i.e., theminimum latencywithout hypervisor andwithout an operating system) with the
latency when the hypervisor is present and the application runs inside a non-root cell.
The Capture Compare Unit (CCU) of the AVR ensures a precise measurement at a resolu-
tion of 62.5ns. To validate automated measurements, I verified sample measurements
with the latency manually measured by an oscilloscope.

The measurement without hypervisor (i.e., VMM=off) represents the bare minimum
latency achievable by the selected hardware platform. Latency difference with and
without hypervisor presence measures the delay that is introduced when the hypervisor
and other guests asynchronously access the system bus.

For the Jailhouse setup (VMM=on), I repeat themeasurement under several environmen-
tal conditions (e.g., additional load is placed on other guests to measure the influence
on the shared system bus) and present the arithmetic mean as well as the standard
deviation and the maximum latency. Every measurement runs for four hours, and was
repeated with an interrupt frequency of 10Hz and 50Hz to determine the role of the
frequency of the measurement. The stress parameter in Table 5.1 describes if other
guests are put under CPU, I/O or memory load with the stress-ng benchmark.

Results can be found in Table 5.1. The first two lines show the minimum interrupt
latency of the measurement without the existence of the hypervisor. The difference to
other measurements denotes the overhead that is introduces by the hypervisor.

The latency that is introduced by the hypervisor does not significantly depend on the
interrupt frequency, but on the utilisation of neighbouring guests. This effect is caused
by the shared system bus: The hypervisor wants to access memory that is required for
dispatching the interrupt, while other guests asynchronously access the same bus and
potentially invalidate shared memory caches.

Additional VMM-induced interrupt latency amounts to 1.26µs - 0.45µs ≈ 810ns on
average, with narrow deviation. Still, outliers lead to additional latencies of ≈ 5µs.
Compared to the cycle times of typical industrial communication bus systems, the
maximum delay is acceptable for many applications.

5.2.3 x86: The Cost of the Moderation of accesses to MSR

The APIC of x86 platforms provides aMMIO-based interface for accessing the controller;
the interface is mapped to a single page in memory. Besides core-local interrupt config-

5.2 Evaluation 133

Table 5.1.: Interrupt reinjection latency on the Nvidia Jetson TK1 (in µs).

VMM Freq Stress µ σ Max

off 10Hz no 0.45 0.02 0.50
off 50Hz no 0.45 0.02 0.50
on 10Hz no 1.26 0.07 2.81
on 50Hz no 1.25 0.04 2.94
on 10Hz yes 1.36 0.34 5.56
on 50Hz yes 1.35 0.34 5.38

uration, a special register of the APIC, the ICR, is used to send IPIs to neighbouring CPU
interfaces. Sending IPIs to interfaces outside of the domain’s scope violates isolation
criteria: the domain must not be allowed to leave its scope. As the page size is the
finest granularity for trap-free assignment of memory, MMIO-based write access to any
register requires moderation by the hypervisor. The hypervisor forwards the access
to the physical interface, and in case of ICR writes, it prevents cross-domain IPIs by
masking out CPUs of other domains.

Onmodern x86 platforms,MSRs provide fine-granular access to various control registers
of the platform, such as performance monitors, power management or debugging
features. The WRMSR resp. RDMSR assembler instructions are used to write to, or to read
from those registers. The address and value of the MSR are stored in CPU registers.

In virtualised environments, the VMM configures MSR bitmaps [UNR+05; AMD05] (each
bit represents a MSR register) to selectively allow for unmoderated (i.e., trap-free) access
to those registers: If access to a register has no effect on neighbouring domains, then
the access does not require any hypervisor intervention and it can be forwarded without
moderation. Therefore, MSR bitmaps allow to selectively trap for read and write access.
Among others, unmoderated access is granted for platform-specific information, Time
Stamp Counter (TSC), or thermal information.

The successor of the APIC, the x2APIC [Int10], provides, in addition to a MMIO interface,
a MSR-based interface to the registers of the controller. Nevertheless, as the x2APIC
does not understand the semantics of isolated domains, write access to the ICR still
requires moderation by the hypervisor. This affects domains with multiple CPUs that,
for example, use IPI for inter-process signalisation. Any moderation leads to additional
hypervisor activity, which can have impact on the system’s response time in real-time
scenarios.

I measure the additional latency that is introduced by Jailhouse and compare it against
another real-time capable virtualisation solution, KVM that runs as VMM on top of a
real-time patched Linux kernel. The setup is called RT-KVM [Rie16].

134 Chapter 5 Evaluation and Discussion

The measurement setup is as follows. To measure the duration of the WRMSR as precise
as possible, I snapshot the value of the TSC,3 a counter that holds the number of CPU
cycles since system reset, right before and after the WRMSR to the ICR. Note that reading
the TSC does not require any hypervisor intervention for both, Jailhouse and KVM–the
TSC provides comparable measurement data. I repeat the measurement and collect
10 · 220 (≈ 10.5 · 106) samples.4 To further achieve minimal measurement overhead,
the samples are appended to an array in memory during the measurement. After the
measurement ended, the array is read in one bulk step. To evaluate the baseline of
raw ICR write access, I additionally measure the duration of the WRMSR instruction on
bare-metal without a hypervisor.

1 void n a t i v e _ x 2 a p i c _ i c r _w r i t e (low , i d)
2 {
3 [. . .]
4 r aw_sp in_ lock_ i rq save (& lck , f l g) ;
5
6 de l t a = ___rdtscp () ;
7 __wrmsr (msr , low , i d) ;
8 de l t a = ___rdtscp () − de l t a ;
9 icr_measurement_enqueue (de l t a) ;

10
11 r aw_sp i n_un lo ck_ i r q r e s t o r e (& lck , f l g) ;
12 [. . .]
13 }

Listing 5.2: The core of themeasurement of the ICRwrite dura-
tion. While interrupts are disabled, newmeasure-
ment values are appended to an array.

I measure the number of cy-
cles that are required for exe-
cuting the WRMSR instruction
in the following three scenar-
ios:

1. Baseline: bare-metal
WRMSR duration with-
out a VMM

2. Jailhouse: WRMSR du-
ration as guest of Jail-
house

3. Qemu/RT-KVM: WRMSR
duration as isolated guest
of Qemu

In every scenario, I use Linux as payload OS to conduct the WRMSR. I use the same kernel
binary in all three scenarios. I instrument andhook intoLinux’s native_x2apic_msr_write()
wrapper and insert TSC reads before and after the measurement. Of course, I disable
interrupts within the critical path of the measurement (cf. Listing 5.2) to avoid preemp-
tion within a single measurement. While the exact choice of the kernel version does
not play an subordinate role for scenarios (1) and (2), I patched (and tuned) the kernel
with the real-time extension Preempt-RT (version 5.4.58-rt35), as I require a real-time
capable host kernel in scenario (3).

3RDTSCP [Int19b] is a serialised variant of RDTSC that avoids out-of-order execution of instructions of the
measurement.

4I chose the size as it benefits frommemory storage properties.

5.2 Evaluation 135

0 … 7 8 … 11

Linux RT

ICR stressoropt. Load

(1) Bare-Metal

0 … 7 8 … 11

Linux RT Linux RT

ICR stressoropt. Load

Jailhouse

(2) Jailhouse

0 … 7 8 … 11

Linux RT

KVM+QEMU

Linux RT

ICR stressor

opt. Load

(3) RT-KVM/Qemu

Figure 5.1.: Different measurement setups for the ICR MSRmeasurement. In every case, CPUs 0-7 serve
uncritical payloads, CPUs 8-11 serve real-time payloads.

The measurement is conducted on a single-socket 12-core Intel® Xeon® Gold 5118 CPU
running at a frequency of 2.30GHz. CPUs 0-7 are assigned to the uncritical domain of
the system CPUs 8-11 represent the critical real-time domain.

In case of (1) Bare-Metal, those CPUs are isolated from the rest of the system by using
Linux kernel real-time configuration mechanisms, such as isolcpus, nohz-full and
IRQ affinity rerouting. Any systemnoise, such as device interrupts, local timer interrupts
and housekeeping activities are redirected to uncritical CPUs. Unless explicitly specified,
processes will not be scheduled to those isolated CPUs.

In case of (2) Jailhouse, CPUs 8-11 are assigned to an isolated Jailhouse non-root cell by
the hypervisor. As payload, the isolated domain is booted with the same Preempt-RT-
patched Linux kernel as used in (1).

The (3) Qemu/RT-KVM setup uses the same Linux-based isolation setup as in (1) with
the difference that the ICR measurement is deactivated in the host kernel. In this case,
virtual CPUs are explicitly pinned to the dedicated and isolated CPUs 8-11.

For each setup, I need a payload that causes a high amount of ICR writes in the real-time
domain. Therefore, I use the stress-ng tool with the fifo stressor that starts workers which
exercise a named pipe, which leads to frequent writes to the ICR. I repeat each setup
under two additional environmental differences: with and without load on uncritical
CPUs 0-7. Again, I use stress-ng on those to put additional stress on shared system busses
and caches.

The results of the measurement can be seen in Fig. 5.2. The worst-case latency is of
special interest, as it determines the maximum delay of the platform. Worst-case values
are marked with horizontal lines. On bare-metal, a write to the ICR register takes at
maximum, 296 cycles without load and 2216 cycles (factor 7.49 slowdown in comparison

136 Chapter 5 Evaluation and Discussion

no-load load

0.30 2.000.13 0.69 8.66 0.10 0.30 10.000.96 3.78 36.47

690 4 600296 1 596 19 917 230 690 23 0002 216 8 688 83 879

0

1

2

3

4

5

6

Approx. execution time (µs)

Execution time (TSC ticks)

O
cc
ur
re
nc
e
(1
0x
)

Variant Bare-metal Jailhouse Qemu/RT-KVM

Figure 5.2.: Histogram of the execution time of WRMSRs to the ICR register of the x2APIC in TSC ticks and
approx. transformed execution time in us. Vertical lines denote the maximum latency of a
measurement. Both axes are scaled logarithmically.

to no load) under load. These values denote the bare ICR write access time that is
achievable on the platform.

Under Jailhouse, the worst case amounts to 1596 without load, resp. 8688 (factor 5.44
slowdown) with load. The slowdown is better than on bare-metal, yet, the absolute
maximum latency in the worst case (load situation) increased by 6472 ticks or 2.82µs.

However, Qemu is 67 times slower than bare-metal without load, and 37 times slower
under load. An additional worst-case delay of 35.51µs can be unacceptable formany real-
time applications, while an additional maximum delay of 2.82µs is within a reasonable
range of acceptable delay in many real-world real-time systems. The results can be used
as actionable criteria, if a system architecture fulfils the requirements of a specific use
case.

5.2.4 The Cost of Spectre Mitigations

Side-channel attacks on speculative execution of modern processors challenge system
software to implement cost-intensive countermeasures, partly assisted by changes in

5.2 Evaluation 137

CPUmicrocode [Int18a]. While the impact of mitigations against speculative execution
attacks on throughput-oriented systems is well-known [Pro+18], impact on virtualised
or real-time system received less attention.

To quantify the impact on real-time systems, I will measure the interrupt response time
for two different platforms: a Xeon®-based Intel® platform and a ARM-based Nvidia plat-
form. At the core of the measurement, I use the real-time testbench cyclictest [GKW19]
to compare latency differences of systemswith andwithoutmitigations that are required
to protect against Spectre-like attacks.

Cyclictest is a multi-threaded high-resolution Linux user-space (US) benchmark that
periodically configures a timer interrupt andmeasures the latency between the expected
arrival of the interrupt, and the time where the interrupt notification actually arrived at
the measuring thread. Threads of cyclictest typically run with a real-time scheduling
policy (inmy case SCHED_FIFO) and have the highest real-time priority. Eachmeasuring
thread is pinned to a specific CPU. Cyclictest supports REALTIME and MONOTONIC
clocks, and uses Linux’s high-resolution sleep system call clock_nanosleep(). The kernel
receives the sleep request, arms the timer and changes the process state from running
to sleeping. The kernel will then either idle and wait for the next interruption, or, if
existent, reschedule processes of lower priority on the CPU. As the timer interrupt will
first arrive in the kernel space before it is propagated to userland, cyclictest can be used
to detect, trace and debug outlying latencies that occur between the system-level arrival
of the interrupt, its dispatching, and the propagation to the userspace until cyclictest
snapshots the timestamp of the arrival.

The goal of cyclictest is to not observe strong outliers that exceed a certain threshold
over very long periods of time.5

As mentioned in Section 5.2.2, interrupts on ARM platforms require additional hyper-
visor activity due to interrupt reinjection by the hypervisor, which causes additional
latencies. Those latencies can be measured with cyclictest. Under varying environmen-
tal conditions (e.g., variations of additional lower-priority load), the long duration shall
ensure a high coverage of rare events, such as, for example, SMIs, NMIs, machine check
exceptions (MCEs), thermal exceptions, and others.

I use cyclictest to quantify the maximum latency that can be observed under the exis-
tence of a VMM. First, I measure the base-line of the system to determine latencies that
can be expected without a hypervisor on bare-metal. Next, I repeat the measurement
while the VMM is present. Analogous to the ICR measurement in Section 5.2.3, I repeat
the measurement under two environmental variations: with, and without additional
5It is not unusual, that systems are benchmarked with cyclictest under varying conditions over weeks.

138 Chapter 5 Evaluation and Discussion

0 4 8 12

VMM
IRQ IRQ IRQ

OS sleep sleep …

cyc rearm rearm rearm

equidistant

US:
jitter jitter jitter

0 4 8 12

VMM
IRQ IRQ IRQ

OS

load …

cyc rearm rearm rearm
US:

jitter jitter jitter

Figure 5.3.: Schedule of cyclictest. Left: The system is left without load, and no hypervisor intervention
is required. Right, the system is under load, and the load causes VM exits.

peripheral load. In this measurement, I optionally put load with lower priority than
cyclictest on the measuring CPUs to additionally stress the OS kernel (e.g., to stress
decisions of the scheduler), and to additionally stress the hypervisor (i.e., by exits caused
by the additional load).

To understand, why it is important to put load on those exact CPUs, I will first elaborate
circumstances, when, and why (a) the hypervisor may introduce additional overhead,
and (b) when Spectre mitigations are exactly required. Consider Fig. 5.3. In both figures,
the x-axis denotes time in arbitrary units, and the y-axis denotes activity in different
privilege levels, resp. US processes. On the left side, the system has no additional load–
cyclictest is the only scheduled application in userspace of the measuring core. In case
of my measurement on an Intel® x86 platform (Ref. Fig. 5.4), the hypervisor does not get
active during the measurement; I achieve zero traps in that configuration. On the ARM
system, in turn, every interrupt arrives at the VMM and requires reinjection to the guest.
However, even in zero-trap scenarios additional latency may occur if the hypervisor is
active, as virtualisation comes at a certain cost [Dre08]. Hence, and as additional load
may (depending on the workload, and the platform) lead to additional hypervisor exits,
I measure both: without the existence of a VMM (i.e., bare-metal) and with existence of
a VMM (i.e., Jailhouse).

The IRQ directly arrives at the guest OS in the Intel® x86 setup. The OS acknowledges
the interrupt and activates the high-priority cyclictest process. Cyclictest measures the
jitter (as described before), rearms the timer and sleeps. As no other tasks are waiting
on the measuring CPU in the no-load scenario, the system will idle.

When the interrupt arrives in the load scenario (right side of Fig. 5.3), the load-task is
preempted by the OS, which acknowledges the interrupt and immediately reschedules
cyclictest. Cyclictest, in turn, snapshots time and measures the jitter, rearms the timer
and sets itself again to sleep state. The OS will then reschedule the preempted low-
priority load task until the next interrupt arrives. Now, the load processmay occasionally
lead to activities of the hypervisor (e.g., MSR writes to the ICR register of the x2APIC,

5.2 Evaluation 139

no-load load

bare-m
etal

Jailhouse

2 3 4 5 6 0 10 20 30

0
1
2
3
4
5
6

0
1
2
3
4
5
6

Latency (µs)

O
cc
ur
re
nc
e
(1
0
x
)

Mitigation no-protection default

Xeon E5-2683 v4, 8 isolcpus, duration 240min

Figure 5.4.: Intel® Xeon® E5-2683 v4: Latency histogram of the influence of mitigations against spec-
ulation attacks on determinism and response latencies of a Preempt-RT extended Linux
based system. Left side: without additional system load. Right side: measuring CPUs are
put under additional non-real-time load.

Ref. Section 5.2.3). If the interrupt arrives while the hypervisor preempted the OS, at
least two context switches are involved (VMM→OS, and OS→US), which leads to yet
higher latencies.

This situation is aggravated by mitigations for attacks on speculative execution, as they
are primarily conducted at these type of context level switches. Meltdown, for example,
exploits speculation on otherwise prohibited reads on supervised kernel pages [Int19b]
by leveraging side-channel attacks on caches [Lip+18] on Intel® x86 platforms as well
as on some ARM variants [ARM20b]. To mitigate meltdown, Linux introduced PTI, a
mechanism that separates user- and kernel-space page tables. Only thin supervised
trampoline code to switch page tables on US→OSS context level switch is present when
executing in user-land. On any context level switch (black arrows in Fig. 5.3) between US
and OS, the kernel will invalidate the TLB and switch the tables, which introduces laten-
cies due tomassive changes of themicroarchitectural state of the platform–independent
of the existence of a VMM.

On ARM64 platforms, the kernel needs to invoke the system firmware to protect itself
against speculation attacks [ARM20b]. This does, besides short firmware activity in any

140 Chapter 5 Evaluation and Discussion

case, involve additional hypervisor activity in virtualised setups, as the hypervisor needs
to moderate the firmware call.

Other mitigations for Spectre-like attacks require speculation barriers if an untrusted
user has control over input to the kernel, that may be used for later speculation.6 This
requires enforcement non-speculative indirect array referencing to mitigate Spectre v1.
Another workaround to mitigate speculation of indirect jump addresses is the return
trampoline (retpoline), which mitigates Spectre v2. To prevent speculation on the target
of an indirect jump, the retpoline uses an never-used infinite loop to prevent speculation.
Compilers typically implement this kind of mitigation.

In conclusion, the whole software stack is involved in the still growing number of
mitigations.

Spectre Mitigations on x86 Consider the histogram in Fig. 5.4, and Table 5.2. I measure
on eight cores of dual-socket Intel® Xeon® E5-2683 v4 CPU. Those cores are located at the
same Non-UniformMemory Access (NUMA) node to ensure UniformMemory Access
(UMA). For the isolation I used the same tuneables as in the previous ICR measurement
in Fig. 5.2. In all variants of the measurement, we use the real-time patched Linux
Kernel 4.19.69-rt43.

For the no-protection scenario, I disable all mitigations. Therefore, I use second vari-
ant of the kernel that disables compile-time mitigations (e.g., retpoline). Addition-
ally, I use the stock microcode version 0xb00001e in the no-protection variant, and
0xb00002e [Int18a] in the default setup, as the latter one contains additional instructions
for microcode-assisted speculation control, such as Indirect Branch Prediction Barrier
(IBPB) and Indirect Branch Restricted Speculation (IBRS).

6For example, users have control over system call numbers, which may be later be used for indirection.

Table 5.2.: Cyclictest on a Intel® Xeon® E5-2683 v4 platform: Minimum, average andmaximum latencies
(in µs).

VMM Protection no-load load

min avg max min avg max

bare-metal no-protection 1.509 2.300 4.386 1.056 2.430 23.808
bare-metal default 2.001 2.871 5.765 1.698 3.349 25.219

Jailhouse no-protection 2.007 2.574 4.848 1.296 3.081 27.907
Jailhouse default 2.639 3.101 5.831 1.980 4.136 29.238

5.2 Evaluation 141

Besides updates in microcode, the default configuration activates following OS-assisted
mitigations:

• L1TF: PTE inversion, VMX conditional cache flushes

• Meltdown: PTI

• Spectre v1: __user pointer sanitisation

• Spectre v2: Full generic retpoline, IBPB, IBRS_FW

Note that cyclictest does not cause any hypervisor traps on the selected platform in case
of no-load. I use the stress-ng tool in the load scenario as producer of additional load.
Stress-ng is configured to sequentially change stressors that vary in workload types.
Among others, workload types are computational loads that stress the CPU, memory-
bound loads that stress the system bus, and load types that stress caches, the TLB,
and cause a heavy amount of context switches between user-space and kernel-space.
The measurement is run for 240 minutes, the cycle time for the cyclictest timer on a
CPU is 1ms. Per CPU, the histogram contains collect 14.4*106 measured points with
nanoseconds resolution.

Though minimum latencies are of minor interest in real-time systems, let me first
mention that the minimum latencies achieve better results if the system is under load–
independent of the existence of a VMM and the configuration of the protection. In my
observation, the minimum latency is up to 711ns faster if the system is under additional
load. While this effect may seem contradictory, it can be explained as the result of
multiple effects that occur if the system is under load. Additional load prevents the
system from falling back to sleep states. Furthermore, caches and CPU pipelines are
constantly under utilisation. Hot code paths that are shared between the load and the
measuring task (e.g., parts of the kernel code, such as IRQ handlers) are kept warm in
caches: the load avoids cache misses in those code paths, which is beneficial for the
measuring task. Additionally, the microstate of the CPU may be in a graceful state if the
system is put under constant load.

On bare-metal, spectre mitigations introduce an additional latency of 1.4µs (+32%)
without additional load, and 1.4µs (+6%) with additional load. The absolute time that
is added by the existence of mitigations on bare-metal is constant, independent of
additional system load.

Next, I quantify the latency that is addedby the existence of aVMM.Therefore, I compare
the bare-metal/no-protection configuration and the Jailhouse/no-protection configura-
tion. Note that it is possible to achieve a zero-trap configuration in case of the presence

142 Chapter 5 Evaluation and Discussion

no-load load

bare-m
etal

Jailhouse

12 16 20 25 50 75 100

0
1

2

3

4

5

0
1

2

3

4

5

Latency (µs)

O
cc
ur
re
nc
e
(1
0x
)

Mitigation no-protection default

Nvidia Jetson TX1, 4x Cortex-A57, 2 isolcpus, duration 240min

Figure 5.5.: Nvidia Jetson TX1: Latency histogram of the influence of mitigations against speculation
attacks on determinism and response latencies of a Preempt-RT extended Linux based
system. Left side: without additional system load. Right side: measuring CPUs are put
under additional non-real-time load.

of the VMM. Inmaximum, the existence of a hypervisor introduces an additional latency
of 462ns (+11%) without additional load, and 4.1µs (+17%) with additional load. The
higher latency in the load-scenario can be explained with additional hypervisor activity
that may be required if the hypervisor is active while the interrupt arrives (cf. Fig. 5.3).
If mitigations are activated, the increase of the latency amounts to 66ns (+1.1%) without
load, and 4.0µs (+16%) under load.

Thismeans that thehypervisor adds less overhead–inproportional andabsolutenumber–
than spectre mitigations without additional load. Under load, the hypervisor adds
slightly more overhead than the Spectre mitigations. Still, the maximum overhead that
is introduced through the existence of a VMM amounts to 4µs, which is acceptable for
many real-time scenarios.

Spectre Mitigations on ARM64 Consider the histogram in Fig. 5.5, and Table 5.3. The
measurement has the same setup as for the x86 platform with respect to the variations
of the measurement. However, mitigations on ARM64 require to exchange the system
firmware, as firmware support is required to protect against Spectre v2 [ARM20b]. Be-

5.2 Evaluation 143

Table 5.3.: Cyclictest on an ARM64 Nvidia Jetson TX1 platform: Minimum, average andmaximum laten-
cies (in µs).

VMM Protection no-load load

min avg max min avg max

bare-metal no-protection 8.971 10.523 15.613 8.334 15.117 54.688
bare-metal default 8.744 10.353 22.420 8.717 19.317 68.632

Jailhouse no-protection 10.310 11.807 19.101 9.629 16.915 89.900
Jailhouse default 10.054 11.487 22.122 9.738 22.283 105.185

sides firmware support, this mitigation requires support by the hypervisor, as it needs to
forward themitigation request of the guest, and, of course, OS support that discovers and
enables the conduction of mitigations. The default configuration of the measurement
setup was configured to activate mitigations against Spectre v2. As speculation barriers,
firmware calls cause branch predictor invalidation. My target platform, the Jetson TX1
comes with a quad-core Cortex A57 CPU.

In alignment with the x86 measurements, I observe the same effect of improvements of
the minimum latency if the system is under load. The same argumentation for those
effects apply on the ARM64 platform.

Again, I first investigate the overhead of mitigations without a hypervisor. In maximum,
mitigations cost 6.8µs (+45.4%) without load, and 14µs (+25%) under load. This sig-
nificant increase of latency can be explained with additional context switches when
mitigations are conducted. With additional load on the system, memory caches of the
hypervisor can be evicted by the load. In these cases, the hypervisor will experience a
high amount of cache misses during the interrupt reinjection.

Without protection, the hypervisor adds an additional latency of 3.4µs (+22%) without
load, and 35.2µs (+64.3%) under load. With default protection, the hypervisor reacted
faster than bare-metal −298µs (-1.3%) without load, but 36.5µs (+53.2%) under load.
The improvement of the latency under default protection as a measurement artefact
that can be compensated with longer durations of the measurement.

However, as interrupt reinjection is required on the target platform, the existence of the
hypervisor introduces significant latencies. This situation is aggravated, if mitigations
are activated, asmitigations lead to further context switches that can additionally overlap
with the arrival of the timer interrupt. The suitability of the platform for real-time
applications requires careful consideration.

144 Chapter 5 Evaluation and Discussion

Nevertheless, there is ongoing work to exploit SDEI to avoid costful interrupt reinjection
on ARM64 platforms. Additionally, cache-colouring [Bug+96; Sco+20] can be used to
improve effects on caches that are shared between cores and between the OS and the
VMM.

5.3 Discussion

5.3.1 The Jailhouse Approach

The minimalist approach of Jailhouse results in a manageable amount of Source Lines
of Code (SLOC). This is a crucial factor for both, formal verification from an academic
point of view and system certification from an industrial point of view. I am aware of
the problem that a substantial chain of software besides the Linux kernel (e.g., UEFI
firmware code, bootloaders etc.) is required for the boot process, and needs to be
considered in such certifications to some extent. There are various possible approaches
to address these issues that go beyond the scope of this thesis.

Jailhouse, in total, consists of almost 30k SLOC for four different architectures. This in-
cludes the hypervisor core, example code, kernel driver, and userland tools and utilities.
Substantial parts of the code are architecture-independent. The common critical hyper-
visor core code that is shared across all architectures amounts to less than 3.4k SLOC.
Architecture dependent code amounts to ≈7.4k SLOC for x86 and implements both,
Intel® and Advanced Micro Devices (AMD), and≈5.4k SLOC for ARM (both, ARMv7 and
ARMv8). Exemplarily, the whole hypervisor core for ARMv7 sums up to ≈7.4k SLOC.

Many research systems are developed from scratch and spend tremendous effort on
re-implementing existing device drivers. But still, missing device support is a major
obstacle for their practicability. More than half of Quest-V’s source lines of code (≈70k
SLOC of 140k SLOC) implement device drivers. With almost 27k SLOC, XtratuM is more
lightweight than Quest-V and only implements basic drivers for debug output. Still,
the publicly available versions of Quest-V and XtratuM currently only support the x86
architecture.

Jailhouse does intentionally not follow classical virtualisation approaches, but its design
does not generally eliminate the use of those techniques. This opens the possibility to
exploit Jailhouse as an experimental systems platform that allows for keeping focus on
the actual problem instead of re-implementing fundamentals from scratch. Jailhouse
is an ideal platform for investigating hardware and software behaviour under AMP

5.3 Discussion 145

workloads. Furthermore, it provides a convenient and comfortable environment for
executing DSP-like workloads on raw hardware.

Modern multi-core systems already provide enough physical CPUs to make scheduling
in hypervisors unnecessary for many real-world embedded use cases. In fact, numerous
essential requirements on real-time embedded hypervisors [CRM10], such as real-time
scheduling policies, efficient context switches, or deterministic hypervisor calls, do
not even need to be addressed in a partitioned setup. Those requirements actually
reflect well-known issues of operating systems and should not be duplicated in hypervi-
sor space for embedded systems with real-time requirements. As Jailhouse does not
virtualise CPUs, overcommit hardware or schedule partitions, there are no expensive
partition context switches or scheduling issues [Ves07] as they occur in other real-time
hypervisors [KW07; MRC05; Pin+14; Xi+11]. Hypercalls are only used for management
purposes and not for moderating access to shared hardware.

5.3.2 Hardware Limitations

In general, on all supported platforms, the concept of ideal hardware partitioning is not
yet fully achievable. Depending on the interrupt system and the architecture, interrupts
might arrive at the hypervisor. On such platforms, the interrupt reinjection to guests is a
frequent job of the hypervisor that introduces unintended additional interrupt latencies.
This issue is already solved for 64-bit x86 architectures that support Interrupt Remapping
and will be solved in future ARM architectures that implement the GICv4 [ARM16]
specification, which is beneficial to the final goal, to end up in no VM exits.

Virtualisation always comes at the cost of drawbacks and implications on performance
and latency, especially when limitations of current state of the art hardware does not
provide sufficient assistance for hardware partitioning. Hypervisor activity and the
amount of traps can be significantly minimised by future improved hardware design.
Placing different hardware devices on separate pages is a hardware design issue that
could easily be solved.

Nevertheless, there are unavoidable traps that are caused by hardware design. On
current ARM architectures, the interrupt distributor must be virtualised. Varanasi and
Heiser [VH11] assume that this is not expected to cause performance issues. During
the implementation of my demonstration platform I contrariwise observed that Linux
kernels with the Preempt-RT real-time patch make heavy use of the interrupt distributor
which causes high activity of the hypervisor. Such issues should be addressed by proper
hardware design in order to be able to execute unmodified guests.

146 Chapter 5 Evaluation and Discussion

The physical design of many dual-homed hardware devices (e.g., clock and reset con-
trollers) forces us to fall back to paravirtualisation. While this is acceptable for many
real-time scenarios, as those types of devices are typically not called in the operational
phase, they still should be designed in a way, that settings of a device can be modified
without any impacts on other devices.

The requirements of Popek and Goldberg were postulated in 1974, but are—almost half
a century later—still applicable to modern systems. However, some adaptions and
extensions are required to handle contemporary real-world use cases that need to satisfy
real-time and mixed criticality requirements with slight adaptions. In Section 4.1 I
have presented general, high-level criteria, and have also derived consequences for
hypervisor assisted static hardware partitioning.

Many of the existing hardware virtualisation extensions reduce hypervisor interaction to
optimise the average-case behaviour (throughput) of systems. As real-time systems are
optimised for the worst-case, these extensions do not always necessarily meet real-time
requirements in terms of low latency as avoidable hypervisor interception is required
in many cases.

For ideal hardware partitioning, any remaining interception causes aremainly solved by
software by policy-based decisions that can fully be offloaded to hardware. Hardware/-
Software co-design can close the missing gap: software requirements on the system
need to be carefully evaluated with systems designers.

Barrelfish [Sch+08] is an operating systems designed for heterogeneousmulti- andmany
core systems. They focus on operating system scalability aspects, as, for example, the
number of CPUs on a system grows more than individual clock rates. They argue that
multi-core systems can be seen as a network of independent cores, and that no sharing
at lowest level is required [Bau+09].

Other researchers analyse operating system overhead and try to offload, for example,
scheduling decisions to hardware [DL17]. Microkernel approaches follow similar goals:
a significant fraction of decision should be offloaded to hardware.

5.3.3 Speculative Execution and Static Hardware Partitioning

The disclosure of Spectre and related attacks target the complexity of modern systems,
and require, depending on the workload, expensive mitigation measures. Many of these
attacks exploit sharing of resources: hardware units can be shared across multiple tasks.
This includes, for example, physical CPUs, if different workloads are scheduled on the

5.3 Discussion 147

same execution unit, and caches, if different workloads on different execution units
share the same caches.

With the existence of multi-core SMP CPUs, software-based sharing techniques, such as
process or domain scheduling, can be avoided for many use cases. From a real-time
perspective, this lowers system overhead and on the other hand, it avoids sharing of
hardware resources and inherently reduces the attack surface for attacks based on
speculative execution.

For mixed-criticality environments, the partitioning of systems is an architecturally
more attractive alternative that can handle both, the inadvertent establishing of covert
side channels and the safe coexistence of workloads of mixed criticality at the same
time. This benefits, for instance, existing certified industrial codes that can only be
modified at the expense of re-certification, which is both substantial in terms of mone-
tary investment and required time to market: Instead of ensuring protection by adding
explicit countermeasures to the code, it is run inside a isolated partition. Virtualisation
technologies of modern CPUs provide mechanisms for strict and full isolation of com-
puting domains [UNR+05; Int18b; AMD05; VH11], and the overhead (usually caused by
the decreasing lack of hardware capabilities and imperfections) imposed by the cost
of partitioning only marginally differs from the cost of mitigations in many situations
(Ref. Section 5.2.4). Since partitioning provides additional possibilities to system archi-
tects, I perceive the approach to be a preferable solution as compared to only rectifying
erratic CPU behaviour.

It is self-evident that a system operating at maximal capacity will not be able to satisfy its
original constraints once such countermeasures will be in place, which gives additional
justification to the use of over-provisioned hardware. I have already remarked that many
real-world systems do not operate at the brink of their capacity, and will retain the ability
to appropriately respond to events even in the presence of Spectre-type mitigations.

5.4 Smoke Test

To demonstrate the suitability of the approach especially for practical use, I imple-
mented a (mixed-criticality) multi-copter control system that is shown in Fig. 5.6 The
requirements on such platforms are comparable tomany common industrial appliances:
The flight stack, a safety and real-time critical part of the system with high reliability
requirements, is responsible for balancing and navigating the aircraft. Sensor values
must be sampled at high data rates, processed, and eventually be used to control rotors.

148 Chapter 5 Evaluation and Discussion

Figure 5.6.: A multi-copter platform that runs on the Jailhouse hypervisor. The real-time critical flight
control executes within a Jailhouse cell, while uncritical parts of the system (e.g., camera
tracking) execute in an isolated domain.
Photo © OTH Regensburg / Florian Hamerich

For a safe and reliable mission, the control loop must respond deterministically. System
crashes may result in real crashes with severe consequences.

The flight stack runs in a Jailhouse cell, while uncritical tasks, for exampleWiFi com-
munication with a ground station or camera tracking, can easily be implemented in
an uncritical part thanks to the available Linux software ecosystem. Critical hardware
components, for example SPI, I2C or GPIO devices, are assigned to the critical cell. The
hardware platform is a Nvidia Jetson TK1 with a quad-core Cortex-A15 ARMv7 CPU, con-
nected to a sensor board that provides accelerometers, GPS, compasses and gyroscopes.
Two cores are assigned to the uncritical part, and two cores to the critical one.

The critical domain executes a second stripped-down Linux operating system with the
Preempt-RT real-time kernel extension. Ardupilot provides flight control, and does
not require modifications besides board support. This underlines that existing appli-
cations can be deployed in a Jailhouse setup with little effort, and that it is suitable for
implementing real-time safety-critical systems mostly based on existing components.
Nonetheless, I needed to solve various issues that do not arise on a purely conceptual

5.4 Smoke Test 149

level or with systems tailored for very specific hardware, but endanger assumptions
made in my and similar approaches.

5.5 Summary

The implementation of mixed-criticality systems requires safe isolation. Primitives
that can be used to achieve safe isolation, in turn, depend on mechanisms provided by
hardware. On the one hand, uncritical domains of a system demand for high flexibility
with respect to their field of application, on the other hand, safety-critical applications
demand for strict isolation from other domains of the system.

The one extreme is the individual conception of tailored hardware – processor architec-
tures that precisely fulfil the needs of a specific system. This approach is accompanied
by high hardware development costs and complicates future reconfigurations of the
payload software [Die19]. The other extreme is to purely rely on software-based isolation
primitives – OSs use standard isolation mechanisms and shall guarantee a sufficient level
of isolation (Ref. Section 1.3.2, SIL2LinuxMP). Yet, this approach is accompanied by
lower hardware costs, but also by lower isolation guarantees.

Virtualisation extensions of COTS hardware allow to introduce strong isolation barriers
that are otherwise not used by standard system software. I presented the concepts of Jail-
house, a real-world Linux-based static partitioning hypervisor. Static and ideal hardware
partitioning are promising approaches to fill the gap between both extremes: it enables
dynamic reconfiguration of complex systems, and exploits strong hardware-based iso-
lation mechanisms that are provided by economic COTS hardware components. For
embedded real-time virtualisation, its ultimate goal is to minimise the interaction with
guests. All issues that are introduced by conventional (para-)virtualisation approaches
are deferred back to the operating systems of the guests, where they already existed
before. Furthermore, the driverless approach tries to fill the gap between academic
research systems and industrial practicability.

In comparison to paravirtualisation techniques, direct hardware assignment to guests
allows for running unmodified legacy payload applications with no active hypervisor
overhead. The minimalist hypervisor core simplifies certification efforts. By executing
standard operating systems as guests, efforts that are required for porting existing legacy
payload applications can be minimised. By implementing a complex demonstration
platform, I successfully showed the practicability of hardware partitioning.

150 Chapter 5 Evaluation and Discussion

While standard virtualisation extensions provided by current hardware seem to suffice
for a straight forward implementation of my and many other approaches, real hardware
presents a number of limitations that can completely undermine the advantages and
guarantees of partitioning and virtualisation-based approaches. As ideal hardware par-
titioning is not possible on supported platforms, I showed in Section 5.2 quintessential
benchmarks that are required to quantify the performance of the hypervisor and to
assess the suitability of the approach for specific use cases.

The measurement in Section 5.2.4 evaluates the impact of Spectre mitigations on real-
time systems. I showed that for many real-world use cases that require Linux to run
side by side with real time operating systems, static hardware partitioning is a viable
alternative to classical OS-based isolation approaches, especially when legacy workloads
must be protected against hardware weaknesses like Spectre-class speculation attacks
without modifying certified components.

I defined the concepts of ideal VMMs, ideal partitions and ideal partitioned systems with
the goal of establishing zero-trap hypervisors on real-world systems that only need to
account for setting up partitions, but do not interact with the content of any partitions in
the operational phase. Experiments with an implementation of the concept on multiple
hardware platforms showed limitations inherent in current hardware. I discussed
necessary improvements in future virtualisation techniques to facilitate a realisation of
my approach on real-world systems.

In future, hardwaremanufacturers are asked to change design aspectswith respect to the
demand that hardware can be partitioned. Ongoing developments in this field already
promise partial improvements with respect to system partitioning. Any software-based
workaround leads to more avoidable hypervisor code and more hypervisor logic. This
demand requires software engineers and hardware manufacturers to strengthen their
focus on Hardware-Software Co-design.

5.5 Summary 151

End of Part II

153

Summary, Conclusions and
Further Ideas

6
6.1 Summary of the Thesis and Conclusion

In this thesis, I presented and evaluated an architecture for mixed-criticality systems
based on OSS components. After I elaborated common industrial requirements on such
systems, I continued from the software engineering perspective in Part I, and from a
system engineering perspective in Part II. The approach from those two sides is neces-
sary to take all aspects (Real-Time and OSS, Software Certification and Strict Isolation)
into account to derive an architecture that holistically respects all requirements.

In particular, I considered consolidated mixed-criticality systems, where Linux serves
as feature-rich OS for less-critical aspects of the system, while critical payloads execute
in strictly isolated domains. By exploiting virtualisation extensions of modern CPUs, I
presented the concept of ideal hardware partitioning that enables strict isolation across
execution domains. The concept was evaluated on COTS hardware. Ideal hardware
partitioning allows for executing hard real-time payloads in dedicated domains, while
they remain strictly isolated from less-critical aspects of the system, where Linux and
its feature-rich ecosystem execute. The thin hypervisor layer of the approach eases
certification efforts.

Yet, OSS components still demand for certification when being used in safety-critical
environments, which, in turn, requires argumentations on their development process.

6.1.1 Software Engineering

The industrial deployment of OSS is often hindered by certification requirements on
development processes. To judge wether OSS projects comply with relevant standards,
it is necessary to quantify characteristics of the development process. To conduct
analyses regarding traceability and auditability of development decisions, including
code writing, reviewing, deployment, and maintenance activities, it is prerequisite to
be able to reconstruct the development process. Hence, I asked the following research
question.

155

Research Question 1: Can complex OSS development processes be reconstructed in ex-post
analyses?

The open and community-driven development process of OSS does not provide full
traceability of its process by design. However, my contributions in Chapter 2 showed
that it is possible to reconstruct and analyse development processes in ex-post analyses.
By restructuring otherwise disorganised publicly available development artefacts, it
is possible to reconstruct the development process, that is, to arrange development
artefacts in a normalised, queryable representation. My approach scales with the largest
OSS projects of the world.

This representation is the basis for answering in-depth questions about the development
process. Hence, I posed my second research question:

Research Question 2: What are reasonable metrics to quantify the adherence to or violations
of OSS development processes?

To give an answer to this question, I exemplarily analysed the Linux kernel in Chapter 3.
I gave an in-depth overview and formalisation of the Linux Kernel Development Pro-
cess (LKDP), and quantified key development characteristics, such as the amount of
ignored patches, or the amount of patches that were integrated in conformance with
official development processes. Those metrics can be used as proxy metrics for safety
assessments. Finally, I systematically investigated violations of the development process,
and categorised different types of violations of the process. My framework gives the
possibility to conduct further in-depth analyses that serve as an evidence-based input
for safety certification efforts.

I showed that it is possible to quantify development process-related aspects of large-scale
OSS development processes. The lack of traceability of OSS projects is no longer an ob-
stacle to safety certifications. From the software engineering perspective, OSS software
provide serious alternatives for being deployed in safety-critical environments.

6.1.2 System Engineering

While the methodology and analyses in Part I help to address the certification require-
ment (cf. Req. 2), they do not address remaining requirements on mixed-criticality
systems: real-time capabilities of the system (cf. Req. 1) and strict isolation of domains
(cf. Req. 3).

To address these requirements, I presented the concept of ideal hardware partitioning
in Part II. By exploiting virtualisation extensions of modern COTS CPUs, ideal hardware

156 Chapter 6 Summary, Conclusions and Further Ideas

partitioning segregates SMP systems into isolated execution domains, whilemaintaining
real-time capabilities of the platform. Ideal hardware partitioning eradicates software-
induced overhead that is related to the partitioning of the system. The fist goal was
to investigate if ideal hardware partitioning is a feasible approach for common COTS
systems:

Research Question 3: What are hardware requirements to implement ideal hardware parti-
tioning?

In Chapter 4, I defined ideal hardware partitioning, and derived hardware requirements
that are mandatory to successfully implement the approach. In Section 4.2, I presented
the concept and the architecture of the Jailhouse hypervisor, which aims to implement
ideal hardware partitioning on four different architectures: 64-bit x86 (Intel®and AMD),
32-bit ARMv7 and 64-bit ARMv8 platforms. While modern architectures provide com-
prehensive virtualisation extensions, and development trends strive towards the full
implementability of the approach, I concluded that ideal hardware partitioning is not
yet fully achievable on those architectures: In certain situations, it is unavoidable that
software-based intervention causes additional latency, which potentially endangers
real-time capabilities of the platform. Hence, I systematically identified and quantified
remaining overheads:

Research Question 4:What are the limitations on current COTS hardware to implement ideal
hardware partitioning? What are unavoidable overheads?

In Chapter 5, I presented methodologies to systematically microbenchmark remaining
overheads. Results of the analysis can be used to assess the suitability of a given platform
for static hardware partitioning. I discussed and showed the suitability for real-world
applications of the approach. While ideal hardware partitioning is not yet fully achiev-
able on those platforms, I showed that limitations of current architectures are not a
major drawback for the suitability of the approach on COTS hardware components in
general.

6.2 Further Ideas

Software Engineering With respect to software engineering aspects of my thesis, I was
able to show that OSS development processes can be reconstructed. My evaluations
underline the practicability of the approach. Yet, they do not qualify OSS software for use
in safety-critical environments. In the future, precise questions on processual ongoings

6.2 Further Ideas 157

in projects that support safety certification endeavours need to be defined by safety
experts, and can then be answered based on my methodology.

System Engineering Hardware manufacturers are demanded to change design aspects
with respect to the requirements of ideal hardware partitioning. This demand requires
software engineers and hardware manufacturers to strengthen their focus on Hardware-
Software Co-Design: Open instruction set architectures (ISAs), for example RISC-V,
offer the possibility to adjust the platform to individual requirements. Furthermore,
open ISAs offer the opportunity to address the remaining issues at their root cause: the
hardware. Further investigation allows for implementing ideal hardware partitioning
on real-world hardware.

158 Chapter 6 Summary, Conclusions and Further Ideas

Appendix A

SHARE-ALT
This chapter shares updated material with the OpenSym ’16 paper “Observ-
ing Custom Software Modifications: A Quantitative Approach of Tracking
the Evolution of Patch Stacks” [RLM16].

A.1 Quantification of Mainlining Efforts

Special-purpose software, like industrial control, medical analysis, or other domain-
specific applications, is often composed of contributions from general-purpose projects
that provide basic building blocks. Custommodifications implemented on top of them
fulfil certain additional requirements, while the development of mainline, the primary
branch of the base project, proceeds independently.

Especially for software with high dependability requirements, it is crucial to keep up
to date with mainline: latest fixes must be applied and new general features have to be
introduced, as diverging software branches are hard to maintain and lead to inflexible
systems [GS12]. Parallel development often evolves in the form of patch stacks: feature-
granular modifications of mainline releases. Because of the dynamics exhibited by
modern software projects, maintaining patch stacks can become a significant issue in
terms of effort and costs.

My methodology presented in Chapter 2 can be used to quantitatively analyse the evolu-
tion of patch stacks by mining git [GIT16] repositories and produces data that can serve
as input for statistical analysis. I use the methodology to compare different releases
of stacks and groups similar patches (patches that lead to similar modifications) into
equivalence classes. This allows for comparing those classes against the base project to
measure integrability and influence of the patch stack on the base project. Patches that
remain on the external stack across releases are classified as invariant and are hypothe-
sised to reflect the maintenance cost of the whole stack. A fine grained classification
of different patch types that depends on the actual modifications could function as a
measure for the invasiveness of the stack.

159

In the following, I will present an approach for observing the evolution of patch stacks
based on the methodology of PaStA, as presented in Chapter 2. I will present a case
study on Preempt-RT [PRT20], a real-time extension of the Linux kernel that has been
enjoying widespread use in industrial appliances for more than a decade, yet has not
fully been integrated into standard Linux. I measure its influence on mainline Linux
and visualise the development dynamics of the patch stack.

A.1.1 Approach

In general, a patch stack (also known as patch set) is defined as a set of patches (commits)
that are developed and maintained independently of the base project. Well-known
examples include the Preempt-RT Linux real-time extension, the Linux Long Term
Support Initiative (LTSI) kernel, and vendor-specific Android stacks needed to port
the system to a particular hardware. In many cases, patch stacks are applied on top
of individual releases of an upstream version, but they do not necessarily have to be
developed in a linear way [Bir+09]. The commits of the patched version of a base project
are identified as the set of commit hashes that do not occur in the mainline project. My
analysis is based on the following assumptions:

• Mainline upstream development takes place in one single branch.

• Every release of the patch stack is represented by a separate branch.

The work flow of this analysis is assisted by PaStA and consists of the following steps:

1. Set up a repository containing all releases of the patch stacks.

2. Identify and group similar patches across different versions of the patch stacks.

3. Compare representatives of those groups against mainline.

4. Use statistical methods to draw conclusions on the development and evolution of
the patch stacks.

A commit hash provides a unique identifier for every commit: In the following, U is the
set of all commit hashes of the base project, while Pi is the set of the commit hashes of
a release i of the patch stacks. P ≡

⋃
i Pi denotes all commit hashes on the patch stacks.

Note that P ∩ U = ∅. LetH ≡ P ∪ U be the set of all commit hashes of interest. I will
use the PaStA methodology presented in Chapter 2 to cluster similar patches.

160 Appendix A Appendix

Grouping Similar Patches

Patch stacks change as they are being aligned with the changes in base project and
additionally integrate or loose functionalities. New patches are pushed on top of the
stack, existing patches may be amended to follow up with API changes, or patches are
dropped. Because of the rapid dynamics and growth of Open Source projects [DR08], a
significant amount of patches must manually be ported from one release of the base
project to the next. Since the base project changes over time, it is necessary to contin-
uously adapt the details of individual patches. Those adaptations can be classified in
textual and higher-order conflicts [Bru+11]. Textual conflicts can be solved by manually
porting the patch to the next version. In a series of patches, patches may depend on
each other, so that textual conflicts in one patch lead to follow-up conflicts in further
patches. Higher-order conflicts occur when a patch obtains a new (erroneous) semantic
meaning after changes in the base project diverged, despite a lack of textual conflicts.
Both types are known to induce high maintenance cost [MS13].

Even if the semantics of patches remain invariant over time (e.g., a patch introduces
identical functional modifications in subsequent revisions of the patch), their textual
content can change considerably over time. To track patches with unchanged semantics
over time, I use the PaStA methodology that places similar patches into equivalence
classesRj, so that P =

⋃
j Rj. If sim were able to track the exact semantics of patches, it

would hold that sim(a, b) = yes⇔ a ∼ b. But as sim can only compare textual changes,
it follows that sim(a, b) = yes ⇒ a ∼ b. This results from the fact that two similar
patches between two successive versions usually have less textual changes than the first
and last occurrence of the same patch. Approximate P ≈

⋃
j R̂j.

Comparing Groups Against Mainline

After grouping all patches on the stacks in equivalence classes R̂j, a complete rep-
resentative system R ⊆ P is chosen and compared against the commits in the base
project. As representative of an equivalence class, I choose the patch with the lat-
est version, as it very likely has the closest similarity to mainline, if it was integrated.
Q = {(r, u)|r ∈ R, u ∈ U, sim(r, u) ≥ ta} denotes the set of all patches that are found in
the base project.

A.1 Quantification of Mainlining Efforts 161

200

300

400

500

Ju
l 2
01
1

No
v 2

01
1

Ap
r 2
01
2

Oc
t 2
01
2

M
ar
20
13

Au
g 2

01
3

No
v 2

01
3

Ap
r 2
01
4

Fe
b
20
15

De
c 2

01
5

De
c 2

01
6

No
v 2

01
7

Oc
t 2
01
8

De
c 2

01
9

Oc
t 2
02
0

Ju
l 2
02
1

Timeline

Nu
m
be

ro
fP

at
ch

es

3.0-rt

3.2-rt

3.4-rt

3.6-rt

3.8-rt

3.10-rt

3.12-rt

3.14-rt

3.18-rt

4.4-rt

4.9-rt

4.14-rt

4.19-rt

5.4-rt

5.10-rt

5.14-rt

Figure A.1.: Preempt-RT patch stack: Evolution of the stack size since Linux kernel version 3.0.

A.1.2 Discussion

After grouping all patches into equivalence classes and linking them to optional commits
of the base project, they can be distinguished between two temporal conditions: (1)
patches that first appeared on the patch stack and later appeared in the base project
(ports or forwardports) and (2) patches that first appeared in the base project and were
ported back to older versions of the stack (backports). Patches that are not linked to a
commit of the base project are called invariant, as they only appear on the stack. Across
two releases of the patch stack, following flow of patches can be observed:

1. inflow – new patches on the patch stack and backports.

2. outflow – patches that went upstream or patches that were dropped.

3. invariant – patches that remain on the stack.

162 Appendix A Appendix

0.000

0.002

0.004

0.006

0.008

-1000 0 1000 2000 3000
Days between release and upstream

Up
st
re
am

pa
tc
h
de

ns
ity

[a
.u
.]

Figure A.2.: Preempt-RT patch stack: Distribution of integration duration (in days) for patches that are
eventually integrated in mainline. Positive values indicate forwardports, negative values
indicate backports.

In the following, I consider the evolution of the Preempt-RT patch stack as a case study:
First, I inspect the temporal evolution of patch stack size, which is visualised in Fig. A.1.
Among all 1,267 releases of the patch stack published between July 2011 and September
2021 (that in total consist of almost 420,000 patches), PaStA detected 2,995 different
groups of patches. 1,048 of those groups were classified as backports, 706 groups were
classified as forwardports.

Knowledge of the stack history allows for determining the composition of older patch
stacks in terms of the direction of flow of constituents. Retroactively, I can determine
which patches of the stack went upstream at a later point in time, and compute the
amount of backported patches and invariant patches. Fig. A.3 shows the composition
of the latest releases of major versions of the Preempt-RT [PRT20] patch stack. Green
bars describe the amount of patches on the stack that eventually are integrated into the
upstream code base, red bars describe the amount of backports, and the blue bars give
the number of invariant patches.

Another covariate of interest is the time duration that a patch needs to go upstream
(i.e., the time between the first appearance on the patch stack and the integration with
the base project). Fig. A.2 shows the result of this analysis for the Preempt-RT project.
Positive values on the x-axis describe forwardports, negative values describe backports.

A.1 Quantification of Mainlining Efforts 163

0

100

200

300

400

500
3.
0.
10
1-
rt1

30
3.
2.
95
-rt
13
3

3.
4.
11
3-
rt1

45
3.
6.
11
-rt
31

3.
8.
13
-rt
16

3.
10
.1
08
-rt
12
3

3.
12
.7
4-
rt9

9
3.
14
.7
9-
rt8

5
3.
18
.1
40
-rt
11
7

4.
4.
27
7-
rt2

24
4.
9.
28
2-
rt1

87
4.
14
.2
46
-rt
12
2

4.
19
.2
07
-rt
88

5.
4.
14
3-
rt6

4
5.
10
.6
5-
rt5

3
5.
14
.2
-rt
21

Stack Version

Nu
m
be

ro
fc
om

m
its

Types of patches backport forwardport invariant

Figure A.3.: Preempt-RT patch stack: Comparing the composition of the last major releases.

There is a prominent hot spot around zero days. I interpret this spot to indicate close
cooperation with the base project: backporting of many patches only takes few days
while the author list of forward and backport patches overlaps.

A.1.3 Conclusion

I used the PaStA methodology to derive a method to systematically examine the tem-
poral evolution of patch stacks, track non-functional properties like integrability and
maintainability, and estimate the eventual economic and engineering effort required to
successfully develop and maintain patch stacks. My results provide a basis for quanti-
tative research on patch stacks, including statistical analyses and other methods that
lead to actionable advice on the construction and long-term maintenance of custom
extensions to OSS. The results of the analysis can be used to estimate future mainte-
nance efforts of massive out-of-tree developments. An evaluation and visualisation of
the Preempt-RT patch stack was presented as case study.

164 Appendix A Appendix

Lists

Acronyms

#AC alignment check. 127

ABS anti-lock braking system. 2

ACU airbag control unit. 2, 3, 9

AGL Automotive Grade Linux. 10

AMD Advanced Micro Devices. 145, 157

AMP asymmetric multiprocessing. 111, 131, 145

APIC Advanced Programmable Interrupt Controller. 109, 126, 133, 134, 137, 139

ARM Advanced RISC Machines. xiii, 68, 85, 106, 107, 109, 114, 115, 117, 119, 121, 122,
127–132, 138–140, 143–146, 149, 157, 188

ASIL Automotive Safety Integrity Level. 2, 8

AVR AVR (Alf and Vegard’s RISC processor) microprocessor architecture. 132, 133

AVX Advanced Vector Extensions. 127

CAN Controller Area Network. 4

CAS collission avoidance system. 3

CAT Cache Allocation Technology. 110

CCD Code Clone Detection. 52

CCU Capture Compare Unit. 133

CIP Civil Infrastructure Platform. 10

COTS commercial off-the-shelf. 5, 12, 13, 18–21, 99, 102, 103, 150, 155–157

165

CP Control Coprocessor. 106

CP15 Control Coprocessor 15. 115, 129

CPU central processing unit. v, 5, 6, 13, 18, 19, 50, 91, 99–102, 105, 107–115, 117–123, 129,
131, 133–136, 138–144, 146–149, 155, 156

CR Control Register. 106, 109, 127

CVE Common Vulnerabilities and Exposures. 77, 78, 83–86, 89–91, 127, 131

DMA Direct Memory Access. 108, 114, 116

DRAM Dynamic Random-Access Memory (RAM). 13

DSP digital signal processing. 100, 146

ECC Error-Correcting Code. 127

ECM engine control module. 2, 3

ECU electronic control unit. 2–5

EL1 Exception Level 1. 122

EL3 Exception Level 3. 122

ELISA Enabling Linux in Safety Applications. 10

ESC electronic stability control. 2

GIC Generic Interrupt Controller. 115, 128, 129, 131, 132, 146

GPIO general purpose input/output. 132, 133, 149, 188

GPOS general purpose operating system. 15, 101

HMI Human Machine Interface. 5

HPC high-performance computing. 5

I/O input / output. 100, 111, 114, 115, 126, 131, 133

IBPB Indirect Branch Prediction Barrier. 141

IBRS Indirect Branch Restricted Speculation. 141

166 Acronyms

ICR Interrupt Control Register. 109, 126, 130, 131, 134–139, 141, 187, 188

IOMMU I/O memory management unit. 114

IPI inter-processor interrupt. 109, 126, 129, 134

IRQ Interrupt Request. 132, 133, 136, 139, 142, 188

ISA instruction set architecture. 158

KVM Kernel-based Virtual Machine. 123, 127, 134–136

L1TF Level 1 Terminal Fault. 77

LF Linux Foundation. 10

LFB Line Fill Buffer. 121

LKDP Linux Kernel Development Process. 55–58, 64, 73, 156

LKML Linux Kernel Mailing List. 40, 42, 46, 47, 53, 68, 187

LLC Last Level Cache. 110

LOC lines of code. 3

LTS Long Term Support. 60, 62, 85–87, 91

LTSI Long Term Support Initiative. 160

MC mixed-criticality. 5, 11

MC multi-core. 5, 6, 12, 13, 113

MCE machine check exception. 138

MDS Microarchitectural Data Sampling. 119, 120

ML mailing list. 16, 27, 28, 30, 35, 36, 46, 49, 51, 65, 66, 68, 73, 77, 78, 80, 87, 88

MMIO Memory Mapped I/O. 101, 106, 109, 114, 115, 125–128, 133, 134

MMU memory management unit. 4, 101, 102, 105, 107, 119, 120

MPU memory protection unit. 4

MSI-X Message Signalled Interrupts. 116, 131

MSR model-specific register. xiii, 101, 106, 109, 126, 133, 134, 136, 139, 187

Acronyms 167

MTRR Memory Type Range Register. 126

MUA mail user agent. 42

NDA non-disclosure agreement. 57

NFR non-functional requirement. 3, 10

NMI non-maskable interrupt. 127, 138

NUMA Non-UniformMemory Access. 141

NVD National Vulnerability Database. 85

OS operating system. 9, 11, 12, 17, 100, 102, 105, 112, 119, 122, 123, 127, 131, 135, 139, 140,
142, 144, 145, 150, 151, 155

OSS open source software. v, vii, xi, 4, 8–10, 12, 14–17, 20, 25–27, 53, 55, 56, 78, 87, 88,
93, 111, 140, 155–157, 164

PaStA Patch Stack Analysis. 16, 20, 26, 28, 31, 33, 40, 42, 43, 46–53, 55, 57, 60, 62, 64–67,
73, 77, 80, 89, 160, 161, 163, 164, 188

PAT Page Attribute Table. 126

PCI Peripheral Component Interconnect. 113, 114, 116, 127

PIO Programmed Input/Output. 101, 126

PLC Programmable Logic Controller. 5

PMIO port-mapped I/O. 126

PSCI Power State Coordination Interface. 115, 129

PTE Page Table Entry. 120, 142

PTI Page Table Isolation. 120, 140, 142

RAM Random-Access Memory. 166

RDT Resource Director Technology. 110

RIDL Rogue In-Flight Data Load. 120

RT real-time. 9, 11, 18, 102

RTAI Real Time Application Interface. 9

168 Acronyms

RTEMS Real-Time Executive for Multiprocessor Systems. 117

RTOS real-time operating system. 9, 117

SCS safety-critical system. 7–9, 11, 16, 17

SDEI Software Delegated Exception Interface. 131, 145

SGI software generated interrupt. 129

SGX Software Guard Extensions. 120

SIL safety integrity level. 11–13

SLAT Second Level Address Translation. 113

SLOC Source Lines of Code. 145

SMC Secure Monitor Call. 131, 132

SMI SystemManagement Interrupt. 129, 138

SMP symmetric multiprocessing. 111, 131, 148, 157

SMT simultaneous multithreading. 109, 110, 120, 121, 123

SOC System-on-a-chip. 100

SPI Serial Peripheral Interface. 106, 108, 128, 149

SSE Streaming SIMD Extensions. 127

SVM Secure Virtual Machine. 105, 115, 117

TLB Translation Lookaside Buffer. 130, 131, 140, 142

TSC Time Stamp Counter. 134, 135, 137

UART Universal Asynchronous Receiver Transmitter. 106, 114, 126

UMA UniformMemory Access. 141

US user-space. 138–140

VCS version control system. 26, 30, 80

VE virtualisation extensions. 117

VM virtual machine. 111, 139

Acronyms 169

VMM virtual machine monitor. xii, 18, 19, 100, 102–106, 111, 112, 114, 115, 121, 125, 127,
130, 133–135, 138–145, 151

WCET Worst Case Execution Time. 104

x86 x86 microprocessor architecture. xiii, 101, 106, 109, 114, 115, 117, 122, 126, 127, 129,
131–134, 139–141, 143–146, 157

170 Acronyms

References

Own Articles

[Mau+21] WolfgangMauerer, Ralf Ramsauer, EdsonR. LucasF., andStefanie Scherzinger.
“Silentium! Run-Analyse-Eradicate the Noise out of the DB/OS Stack”. In:
19. Fachtagung für Datenbanksysteme für Business, Technologie undWeb (Dres-
den, Germany). 2021 (cit. on p. 130).

[Ram+17] Ralf Ramsauer, JanKiszka,Daniel Lohmann, andWolfgangMauerer. “Look
Mum, no VM Exits! (Almost)”. In: Proceedings of the 13th Annual Workshop
on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT
’17) (Dubrovnik, Croatia). June 2017 (cit. on pp. 99, 111, 115).

[Ram+20] Ralf Ramsauer, Lukas Bulwahn, Daniel Lohmann, andWolfgang Mauerer.
“The Sound of Silence: Mining Security Vulnerabilities from Secret Inte-
gration Channels in Open-Source Projects”. In: Proceedings of the 12th Cloud
Computing Security Workshop (Virtual Event). Nov. 2020 (cit. on p. 55).

[RLM16] Ralf Ramsauer, Daniel Lohmann, andWolfgang Mauerer. “Observing Cus-
tom Software Modifications: A Quantitative Approach of Tracking the
Evolution of Patch Stacks”. In: Proceedings of the 12th International Sympo-
sium on Open Collaboration (Berlin, Germany). Aug. 2016 (cit. on pp. 9, 25,
55, 159).

[RLM19] Ralf Ramsauer, Daniel Lohmann, andWolfgang Mauerer. “The List is the
Process: Reliable Pre-integration Tracking of Commits on Mailing Lists”.
In: Proceedings of the 41st International Conference on Software Engineering
(Montreal, QC, Canada). IEEE. May 2019, pp. 807–818 (cit. on p. 25).

Standards and Norms

[AMD05] Advanced Micro Devices. Secure Virtual Machine Architecture Reference
Manual. 2005 (cit. on pp. 18, 105, 107, 114, 117, 134, 148).

[ARINC653] ARINC 653: Avionics Application Software Standard Interface. Aeronautical
Radio Incorporated (cit. on p. 3).

[ARM13a] ARM Ltd. ARM Architecture Reference Manual. 2013 (cit. on pp. 114, 117).

[ARM13b] ARM Ltd. ARM Generic Interrupt Controller, Architecture version 2.0. 2013
(cit. on pp. 109, 132).

171

[ARM16] ARM Ltd. ARM Generic Interrupt Controller Architecture Specification, GIC
architecture version 3.0 and version 4.0. 2016 (cit. on pp. 105, 107, 109, 128,
132, 146).

[ARM17] ARM Ltd. Software Delegated Exception Interface (SDEI) - Platform Design
Document. 2017 (cit. on p. 131).

[ARM20a] ARM Ltd. Arm Architecture Reference Manual, Armv8, for Armv8-A architec-
ture profile. 2020 (cit. on p. 117).

[ARM20b] ARMLtd.Whitepaper – Cache Speculation Side-channels. 2020 (cit. on pp. 122,
131, 140, 143).

[CAN91] Robert Bosch GmbH. CAN specification Version 2.0. 1991 (cit. on p. 5).

[DO-178B] RTCASC-167, EUROCAEWG-12.DO-178B, Software Considerations inAirborne
Systems and Equipment Certification (cit. on p. 3).

[IEC60601] IEC 60601: Medical Electrical Devices. International Electrotechnical Com-
mission (cit. on p. 3).

[IEC60880] IEC 60880: Nuclear Power Plants – Instrumentation and Control Systems Im-
portant to Safety – Software Aspects for Computer-Based Systems. International
Electrotechnical Commission (cit. on p. 3).

[IEC61508] IEC 61508: Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems. International Electrotechnical Commission (cit. on
pp. 3, 10, 12, 13).

[IEC62304] IEC 62304:Medical device software – Software life cycle processes. International
Electrotechnical Commission (cit. on p. 3).

[Int10] Intel Corporation. Intel® 64 Architecture x2APIC Specification. Mar. 2010
(cit. on pp. 105, 107, 134).

[Int15] Intel Corporation. Improving Real-Time Performance by Utilizing Cache Al-
location Technology Enhancing Performance via Allocation of the Processor’s
Cache. Apr. 2015 (cit. on p. 110).

[Int18a] Intel Corporation. Intel Microcode Revision Guidance. Aug. 2018 (cit. on
pp. 138, 141).

[Int18b] Intel Corporation. Intel® Virtualization Technology for Directed I/O. Rev. 3.0.
June 2018 (cit. on pp. 18, 105, 107, 131, 148).

[Int19a] Intel Corporation. Intel Resource Director Technology (Intel RDT). 2019. URL:
https://www.intel.com/content/www/us/en/architecture-and-
technology/resource-director-technology.html (cit. on p. 110).

172 References

https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html

[Int19b] Intel Corporation. Intel® 64 and IA-32 Architectures Software Developer’s
Manual Volume 3 (3A, 3B, 3C & 3D): System Programming Guide. May 2019
(cit. on pp. 117, 135, 140).

[ISO26262] ISO 26262: Road vehicles – Functional safety. International Organization for
Standardization (cit. on pp. 2, 3, 8, 11).

[KRNL20] The Linux Kernel development community. Linux Kernel Documentation
on MDS - Microarchitectural Data Sampling. see Documentation/admin-
guide/hw-vuln/mds.rst (cit. on p. 121).

Related Work

[Ada18] Bram Adams. personal communication. June 21, 2018 (cit. on p. 49).

[AGL18] The Linux Foundation. “The Automotive Grade Linux – Software Defined
Connected Car Architecture”. In: (2018) (cit. on p. 10).

[Alj+09] Husain Aljazzar, Manuel Fischer, Lars Grunske, et al. “Safety analysis of an
airbag system using probabilistic FMEA and probabilistic counterexam-
ples”. In: 2009 Sixth International Conference on the Quantitative Evaluation
of Systems. IEEE. 2009, pp. 299–308 (cit. on p. 8).

[Ami+09] Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. “A com-
parison of extrinsic clustering evaluation metrics based on formal con-
straints”. In: Information retrieval 12.4 (2009) (cit. on p. 43).

[And02] Ross Anderson. “Security in Open versus Closed Systems—The dance of
Boltzmann, Coase and Moore”. In: Open Source Software: Economics, Law
and Policy. June 2002 (cit. on p. 86).

[Aro+10] Ashish Arora, Ramayya Krishnan, Rahul Telang, and Yubao Yang. “An
Empirical Analysis of Software Vendors’ Patch Release Behavior: Impact
of Vulnerability Disclosure”. In: Information Systems Research 21 (Mar. 2010)
(cit. on p. 85).

[AT06] Christian Arwin and Seyed MM Tahaghoghi. “Plagiarism detection across
programming languages”. In: Proceedings of the 29th Australasian Computer
Science Conference-Volume 48. 2006 (cit. on p. 52).

[Bac+09] Alberto Bacchelli, Marco D’Ambros, Michele Lanza, and Romain Robbes.
“Benchmarking lightweight techniques to link e-mails and source code”.
In: WCRE’09. 16th Working Conference on Reverse Engineering. 2009 (cit. on
p. 52).

Related Work 173

[Bar16] Maxim Baryshnikov. “Jailhouse hypervisor”. Czech Technical University
in Prague, 2016 (cit. on p. 117).

[Bat20] Christopher Batten. Lecture notes ECE 5745 Complex Digital ASIC Design.
2020 (cit. on p. 6).

[Bau+09] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, et al. “The Mul-
tikernel: A new OS Architecture for Scalable Multicore Systems”. In: Pro-
ceedings of the ACM SIGOPS 22nd Symposium on Operating systems principles.
ACM. 2009, pp. 29–44 (cit. on p. 147).

[Bax+98] Ira D Baxter, Andrew Yahin, Leonardo Moura, Marcelo Sant’Anna, and
Lorraine Bier. “Clone detection using abstract syntax trees”. In: Proceedings
of the International Conference on Software Maintenance. 1998 (cit. on p. 52).

[BB18] BusyBox authors. BusyBox Project. Aug. 2018. URL: https://busybox.net/
(cit. on p. 31).

[BBL76] BarryW Boehm, John R Brown, and Mlity Lipow. “Quantitative evaluation
of software quality”. In: Proceedings of the 2nd international conference on
Software engineering. IEEE Computer Society Press. 1976, pp. 592–605 (cit.
on p. 3).

[BD13] Alan Burns and Robert Davis. “Mixed criticality systems-a review”. In:
Department of Computer Science, University of York, Tech. Rep (2013), pp. 1–69
(cit. on pp. 4, 17, 25, 99).

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, et al. “Xen and the Art of Virtual-
ization”. In: Proc. of the 19th ACM Symposium on Operating Systems Principles.
2003 (cit. on pp. 17, 105, 112).

[BGD07] Christian Bird, Alex Gourley, and PremDevanbu. “Detecting patch submis-
sion and acceptance in oss projects”. In: Proceedings of the 4th International
Workshop on Mining Software Repositories. MSR’07. 2007 (cit. on pp. 28, 29).

[Bir+06] Christian Bird, Alex Gourley, Prem Devanbu, Michael Gertz, and Anand
Swaminathan. “Mining Email Social Networks”. In: Proceedings of the 3rd
International Workshop on Mining Software Repositories. MSR’06. 2006 (cit.
on pp. 27, 42, 51).

[Bir+08] ChristianBird,DavidPattison,RaissaD’Souza,Vladimir Filkov, andPremku-
mar Devanbu. “Latent Social Structure in Open Source Projects”. In: Pro-
ceedings of the 16th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. 2008 (cit. on p. 25).

174 References

https://busybox.net/

[Bir+09] C. Bird, P. C. Rigby, E. T. Barr, et al. “The Promises and Perils of Mining
Git”. In: Mining Software Repositories, 2009. MSR ’09. 6th IEEE International
Working Conference on. May 2009, pp. 1–10 (cit. on pp. 30, 32, 160).

[Bis+14] Matt Bishop, Heather M Conboy, Huong Phan, et al. “Insider threat identi-
fication by process analysis”. In: IEEE Security and Privacy Workshops. 2014
(cit. on p. 86).

[BLD11] Alberto Bacchelli, Michele Lanza, and Marco D’Ambros. “Miler: A toolset
for exploring email data”. In: Proceedings of the 33rd International Conference
on Software Engineering. 2011 (cit. on p. 52).

[BLR10] Alberto Bacchelli, Michele Lanza, and Romain Robbes. “Linking e-mails
and source code artifacts”. In: Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering-Volume 1. 2010 (cit. on p. 52).

[BN06] EricW Biederman and Linux Networx. “Multiple instances of the global
linux namespaces”. In: Proceedings of the Linux Symposium. Vol. 1. 2006,
pp. 101–112 (cit. on p. 13).

[Bro06] Manfred Broy. “Challenges in Automotive Software Engineering”. In: Pro-
ceedings of the 28th International Conference on Software Engineering (ICSE)
(Shanghai, China). New York, NY, USA: ACM Press, 2006, pp. 33–42 (cit. on
pp. 4–7).

[Bru+11] Yuriy Brun, Reid Holmes, Michael D. Ernst, and David Notkin. “Proac-
tive Detection of Collaboration Conflicts”. In: Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of Soft-
ware Engineering. ESEC/FSE ’11. Szeged, Hungary: ACM, 2011, pp. 168–178
(cit. on p. 161).

[BTH12] Nicolas Bettenburg, Stephen W Thomas, and Ahmed E Hassan. “Using
fuzzy code search to link code fragments in discussions to source code”.
In: 16th European Conference on Software Maintenance and Reengineering
(CSMR). 2012 (cit. on p. 52).

[Bug+96] Edouard Bugnion, Jennifer M Anderson, Todd C Mowry, Mendel Rosen-
blum, and Monica S Lam. “Compiler-directed page coloring for multi-
processors”. In: ACM SIGPLAN Notices 31.9 (1996), pp. 244–255 (cit. on
p. 145).

[Bul17a] Lukas Bulwahn. “Is Linux Kernel Development Good Enough toMakeYour
Life Depend on It?” In: Embedded Linux Conference Europe. 2017 (cit. on
pp. 15, 25).

Related Work 175

[Bul17b] Lukas Bulwahn. “Is Linux Kernel Development Good Enough to Make
Your Life Dependon it? Progress on Procedures & Methods to Qualify the
Linux Kernel Development Process”. In: Embedded Linux Conference Europe
(ELCE17). Oct. 2017 (cit. on p. 100).

[Can+18] Claudio Canella, Jo Van Bulck, Michael Schwarz, et al. “A systematic eval-
uation of transient execution attacks and defenses”. In: arXiv preprint
arXiv:1811.05441 (2018) (cit. on pp. 19, 113, 115, 117).

[CCR04] HasanCavusoglu,HuseyinCavusoglu, andSrinivasanRaghunathan. “Emerg-
ing Issues in Responsible Vulnerability Disclosure”. In: Workshop on Infor-
mation Technology and Systems. WITS. 2004 (cit. on p. 78).

[Chá+17] Alexander Chávez, Isabella Ferreira, Eduardo Fernandes, Diego Cedrim,
and Alessandro Garcia. “How Does Refactoring Affect Internal Quality
Attributes? A Multi-Project Study”. In: Proceedings of the 31st Brazilian Sym-
posium on Software Engineering. SBES’17. 2017 (cit. on p. 86).

[Chu+12] Lawrence Chung, Brian A Nixon, Eric Yu, and John Mylopoulos. Non-
functional requirements in software engineering. Vol. 5. Springer Science &
Business Media, 2012 (cit. on p. 3).

[CIP17] The Linux Foundation. “The Civil Infrastructure Platform –Whitepaper”.
In: (2017) (cit. on p. 10).

[CJ12] Georgina Cosma and Mike Joy. “An approach to source-code plagiarism
detection and investigation using latent semantic analysis”. In: IEEE trans-
actions on computers 61.3 (2012) (cit. on p. 52).

[Cor11] Jonathan Corbet. “How the Development ProcessWorks”. In: Linux docs.
The Linux Foundation. 2011 (cit. on p. 25).

[Cor19] Jonathan Corbet. “What to do about CVE numbers”. In: Linux Weekly News
(LWN) (2019) (cit. on pp. 78, 90, 92).

[CRM10] Alfons Crespo, Ismael Ripoll, and Miguel Masmano. “Partitioned Em-
bedded Architecture based on Hypervisor: The XtratuM approach”. In:
Proceedings of the 8th European Dependable Computing Conference (EDCC).
IEEE. 2010 (cit. on pp. 17, 146).

[Cul+10] Christoph Cullmann, Christian Ferdinand, Gernot Gebhard, et al. “Pre-
dictability Considerations in the Design ofMulti-Core Embedded Systems”.
In: Proceedings of Embedded Real Time Software and Systems 36 (2010), p. 42
(cit. on p. 118).

[CVE17] CVE-2018-3615, CVE-2018-3620, and CVE-2018-3646. Dec. 2017 (cit. on p. 77).

[CVE19] CVE-2019-1125. Nov. 2019 (cit. on pp. 83, 91).

176 References

[CW02] Steve Christey and ChrisWysopal. “Responsible vulnerability disclosure
process”. In: IETF draft (2002) (cit. on p. 62).

[Die+12] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikschat, and
Daniel Lohmann. “A Robust Approach for Variability Extraction from
the Linux Build System”. In: Proceedings of the 16th International Software
Product Line Conference - Volume 1. SPLC ’12. Salvador, Brazil: Association
for Computing Machinery, 2012, pp. 21–30 (cit. on p. 9).

[Die19] Christian Dietrich. “Interaction-Aware Analysis and Optimization of Real-
Time Application and Operating System”. PhD thesis. Leibniz Universität
Hannover, 2019 (cit. on p. 150).

[DL17] Christian Dietrich and Daniel Lohmann. “OSEK-V: Application-Specific
RTOS Instantiation in Hardware”. In: Proceedings of the 2017 ACM SIG-
PLAN/SIGBED Conference on Languages, Compilers and Tools for Embedded
Systems (LCTES ’17) (Barcelona, Spain). New York, NY, USA: ACM Press,
June 2017 (cit. on pp. 100, 147).

[DR08] Amit Deshpande and Dirk Riehle. “Open Source Development, Commu-
nities and Quality: IFIP 20thWorld Computer Congress,Working Group
2.3 on Open Source Software, September 7-10, 2008, Milano, Italy”. In:
Boston, MA: Springer US, 2008. Chap. The Total Growth of Open Source,
pp. 197–209 (cit. on p. 161).

[DRD99] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. “A language inde-
pendent approach for detecting duplicated code”. In: SoftwareMaintenance,
1999.(ICSM’99) Proceedings. IEEE International Conference on. IEEE. 1999,
pp. 109–118 (cit. on p. 35).

[Dre08] Ulrich Drepper. “The Cost of Virtualization”. In: Queue 6.1 (Jan. 2008) (cit.
on pp. 105, 115, 130, 139).

[Edg19] Jake Edge. “CVE-less vulnerabilities”. In: Linux Weekly News (LWN) (2019)
(cit. on p. 89).

[EKO95] Dawson R. Engler, M. Frans Kaashoek, and James O’Toole. “Exokernel:
An Operating System Architecture for Application-Level Resource Man-
agement”. In: Proceedings of the 15th ACM Symposium on Operating Systems
Principles (SOSP). 1995, pp. 251–266 (cit. on pp. 112, 114).

[Ere03] Justin R Erenkrantz. “Release management within open source projects”.
In: Proceedings of the 3rd. Workshop on Open Source Software Engineering.
2003 (cit. on pp. 27, 30).

Related Work 177

[FM83] Edward B Fowlkes and Colin L Mallows. “A method for comparing two
hierarchical clusterings”. In: Journal of the American statistical association
78.383 (1983) (cit. on p. 43).

[Fou18a] Linux Foundation. Automotive Grade Linux. Aug. 2018. URL: https://www.
automotivelinux.org/ (cit. on p. 25).

[Fou18b] Linux Foundation. Civil Infrastructure Platform. Aug. 2018. URL: https:
//www.cip-project.org/ (cit. on p. 25).

[Fou19] Linux Foundation. Civil Infrastructure Platform (CIP). 2019. URL: https:
//www.cip-project.org (cit. on pp. 5, 99).

[Fre+10] Stefan Frei, Dominik Schatzmann, Bernhard Plattner, and Brian Tram-
mell. “Modeling the security ecosystem-the dynamics of (in) security”. In:
Economics of Information Security and Privacy. 2010 (cit. on p. 62).

[GAH16] Daniel M German, Bram Adams, and Ahmed E Hassan. “Continuously
mining distributed version control systems: an empirical study of how
Linux uses Git”. In: Empirical Software Engineering 21.1 (2016) (cit. on p. 30).

[GBK11] David Gullasch, Endre Bangerter, and Stephan Krenn. “Cache games–
Bringing access-based cache attacks on AES to practice”. In: 2011 IEEE
Symposium on Security and Privacy. IEEE. 2011, pp. 490–505 (cit. on pp. 110,
118).

[GIT16] Git Community. Git Version Control System. 2016. URL: https://git-scm.
com/ (cit. on p. 159).

[GKW19] Thomas Gleixner, John Kacur, and ClarkWilliams. The Cyclictest Real-Time
Benchmark. 2019. URL: https://wiki.linuxfoundation.org/realtime/
documentation/howto/tools/cyclictest/start (cit. on p. 138).

[Gol73] Robert P. Goldberg. Architectural Principles for Virtual Computer Systems.
Tech. rep. Harvard University Cambridge, 1973 (cit. on p. 111).

[GS12] Mário Luı́s Guimarães and António Rito Silva. “Improving Early Detection
of Software Merge Conflicts”. In: Proceedings of the 34th International Con-
ference on Software Engineering. ICSE ’12. Zurich, Switzerland: IEEE Press,
2012, pp. 342–352 (cit. on p. 159).

[Gui14] Nicholas Mc Guire. “SIL2LinuxMP: GNU/Linux Multicore platform for
safety related systems”. In: Linux Plumbers Conference. 2014 (cit. on pp. 12,
13).

[Hei08] Gernot Heiser. “The role of virtualization in embedded systems”. In: Pro-
ceedings of the 1st workshop on Isolation and Integration in Embedded Systems
(IIES). 2008 (cit. on pp. 17, 102).

178 References

https://www.automotivelinux.org/
https://www.automotivelinux.org/
https://www.cip-project.org/
https://www.cip-project.org/
https://www.cip-project.org
https://www.cip-project.org
https://git-scm.com/
https://git-scm.com/
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start
https://wiki.linuxfoundation.org/realtime/documentation/howto/tools/cyclictest/start

[Hem+13] Hadi Hemmati, Sarah Nadi, Olga Baysal, et al. “The MSR Cookbook: Min-
ing a decade of research”. In: 10th Working Conference on Mining Software
Repositories. MSR. 2013 (cit. on p. 86).

[Heo+15] Tejun Heo, JWeiner, V Davydov, et al. “Control group v2”. In: (2015) (cit. on
p. 13).

[Her07] James D Herbsleb. “Global software engineering: The future of socio-
technical coordination”. In: Future of Software Engineering. FOSE’07. 2007
(cit. on p. 27).

[HH08] André Hergenhan and Gernot Heiser. “Operating systems technology for
converged ECUs”. In: 6th Conference on Embedded Security in Cars Conf
(ESCAR). 2008 (cit. on pp. 3, 5).

[HNH03] Guido Hertel, Sven Niedner, and Stefanie Herrmann. “Motivation of soft-
ware developers in Open Source projects: an Internet-based survey of
contributors to the Linux kernel”. In: Research policy 32.7 (2003) (cit. on
p. 27).

[Hua+16] ZhenHuang,Mariana DAngelo, DhavalMiyani, and David Lie. “Talos: Neu-
tralizing Vulnerabilities with SecurityWorkarounds for Rapid Response”.
In: IEEE Symposium on Security and Privacy. SP. 2016 (cit. on p. 85).

[Int18c] Intel Corporation. Resources and Response to Side Channel L1 Terminal Fault.
https://www.intel.com/content/www/us/en/architecture-and-
technology/l1tf.html. 2018 (cit. on p. 77).

[Jää+12] Antti Jääskeläinen, Mika Katara, Shmuel Katz, and Heikki Virtanen. “Veri-
fication of Safety-Critical Systems: A Case Study Report on Using Modern
Model Checking Tools”. In: 6th International Workshop on Systems Software
Verification. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2012 (cit.
on p. 10).

[JAG13] Yujuan Jiang, Bram Adams, and Daniel M German. “Will my patch make
it? and how fast?: Case study on the linux kernel”. In: Proceedings of the 10th
Working Conference on Mining Software Repositories. MSR’13. 2013 (cit. on
pp. 45, 51, 80).

[Jia+07] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu.
“Deckard: Scalable and accurate tree-based detection of code clones”. In:
Proceedings of the 29th international conference on Software Engineering. IEEE
Computer Society. 2007, pp. 96–105 (cit. on pp. 35, 52).

Related Work 179

https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html

[Jia+14] Yujuan Jiang, Bram Adams, Foutse Khomh, and Daniel M German. “Trac-
ing back the history of commits in low-tech reviewing environments: a
case study of the linux kernel”. In: Proceedings of the 8th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement.
ESEM. 2014 (cit. on pp. 32, 47, 49, 52).

[Job+17] Mitchell Joblin, Sven Apel, Claus Hunsen, andWolfgang Mauerer. “Classi-
fying developers into core and peripheral: An empirical study on count
and network metrics”. In: Proceedings of the 39th International Conference
on Software Engineering. ICSE’17. 2017 (cit. on pp. 27, 86).

[KG19] BeckhoffAutomation GmbH&Co. KG. 2019. URL: https://www.beckhoff.
com/ (cit. on pp. 5, 99).

[Kis09] Jan Kiszka. “A Linux/Xenomai Platform for High-Performance Magnetic
Resonance Scanners”. In: Xenomai User Meeting 2009 (XUM2009). 2009
(cit. on pp. 5, 9, 99).

[Kis11] Jan Kiszka. “Towards Linux as a Real-Time Hypervisor”. In: Proceedings of
the 11th Real-Time Linux Workshop. 2011 (cit. on p. 17).

[Kle+14] Gerwin Klein, June Andronick, Kevin Elphinstone, et al. “Comprehen-
sive formal verification of an OS microkernel”. In: ACM Transactions on
Computer Systems (TOCS) 32.1 (2014), pp. 1–70 (cit. on p. 10).

[Kle09] GerwinKlein. “Operating SystemVerification—AnOverview”. In: Sādhanā
34.1 (Feb. 2009) (cit. on p. 117).

[Kle19] Andi Kleen. Linux Kernel MDS mitigation patches. Available at https :
//git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.
git/commit/?id=95310e348a321b45fb746c176961d4da72344282. 2019
(cit. on p. 121).

[Kni02] John C Knight. “Safety Critical Systems: Challenges and Directions”. In:
Proceedings of the 24th International Conference on Software Engineering. 2002
(cit. on pp. 1, 8).

[Koc+19] Paul Kocher, Daniel Genkin, Daniel Gruss, et al. “Spectre Attacks: Exploit-
ing Speculative Execution”. In: 40th IEEE Symposium on Security and Privacy
(S&P’19). S&P. 2019 (cit. on pp. 19, 90, 91, 109, 110, 113, 115, 117–119, 131).

[Kop11] Hermann Kopetz. Real-time systems: design principles for distributed embed-
ded applications. Springer Science & Business Media, 2011 (cit. on p. 9).

[KP13] Florian Kammüller and ChristianW Probst. “Invalidating policies using
structural information”. In: IEEE Security and Privacy Workshops. 2013 (cit.
on p. 86).

180 References

https://www.beckhoff.com/
https://www.beckhoff.com/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95310e348a321b45fb746c176961d4da72344282
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95310e348a321b45fb746c176961d4da72344282
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95310e348a321b45fb746c176961d4da72344282

[Kro07] Greg Kroah-Hartman. “Linux kernel development”. In: Proceedings of the
Linux Symposium. 2007 (cit. on p. 60).

[Kro16] GregKroah-Hartman. “Why kernel development still uses email”. In: Linux
Weekly News (LWN) (2016) (cit. on p. 58).

[Kro19] Greg Kroah-Hartman. “MDS, Fallout, Zombieland & Linux”. In: Embedded
Linux Conference Europe (ELCE). 2019 (cit. on pp. 83, 86, 89).

[Kro20] Greg Kroah-Hartman. personal communication. Jan. 2020 (cit. on pp. 62,
79, 87, 90, 91).

[KW07] Robert Kaiser and StephanWagner. “Evolution of the PikeOSmicrokernel”.
In: First International Workshop on Microkernels for Embedded Systems. 2007,
p. 50 (cit. on pp. 9, 17, 112, 146).

[KZ09] Andrew Kornecki and Janusz Zalewski. “Certification of software for real-
time safety-critical systems: state of the art”. In: Innovations in Systems and
Software Engineering 5.2 (2009), pp. 149–161 (cit. on p. 7).

[LDW11] Ye Li, Matthew Danish, and RichardWest. “Quest-V: A virtualized multik-
ernel for high-confidence systems”. In: (2011) (cit. on p. 112).

[Lev66] Vladimir I Levenshtein. “Binary codes capable of correcting deletions,
insertions, and reversals”. In: Soviet physics doklady. Vol. 10. 8. 1966 (cit. on
p. 37).

[LF18] TheLinuxFoundation. “Technical Charter (the “Charter”) for ELISAProject
a Series of LF Projects, LLC”. In: (2018) (cit. on pp. 10, 25).

[Li+19] Hao Li, Xuefei Xu, Jinkui Ren, and Yaozu Dong. “ACRN: a big little hypervi-
sor for IoT development”. In: Proceedings of the 15th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments. 2019, pp. 31–44
(cit. on p. 17).

[Lin20] Linux Kernel Community. Linux – How the development process works. 2020
(cit. on p. 58).

[Lip+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, et al. “Meltdown: Reading
Kernel Memory from User Space”. In: 27th USENIX Security Symposium
(USENIX Security 18). 2018 (cit. on pp. 19, 90, 109, 115, 117–119, 140).

[LKP18] Linux Kernel Community. A guide to the Kernel Development Process. 2018
(cit. on p. 13).

[LP17] Frank Li and Vern Paxson. “A large-scale empirical study of security
patches”. In: Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security. 2017 (cit. on p. 85).

Related Work 181

[LWM14] Ye Li, RichardWest, and Eric Missimer. “A Virtualized Separation Kernel
for Mixed Criticality Systems”. In: Proceedings of the 10th USENIX Interna-
tional Conf. on Virtual Execution Environments (VEE). Salt Lake City, Utah,
USA: ACM, 2014, pp. 201–212 (cit. on p. 114).

[Man+00] Paolo Mantegazza, E Bianchi, Lorenzo Dozio, et al. “RTAI: Real-time appli-
cation interface”. In: (2000) (cit. on p. 9).

[Mau10] Wolfgang Mauerer. Professional Linux kernel architecture. John Wiley &
Sons, 2010 (cit. on p. 60).

[MES13] DavidMacKenzie, Paul Eggert, and Richard Stallman. Comparing andMerg-
ing Files. 2013 (cit. on pp. 29, 35, 37).

[Min+19] Marina Minkin, Daniel Moghimi, Moritz Lipp, et al. “Fallout: Reading
KernelWrites From User Space”. In: (2019) (cit. on pp. 19, 109, 115, 117).

[MJ13] Wolfgang Mauerer and Michael C Jaeger. “Open source engineering pro-
cesses”. In: it–Information Technology 55.5 (2013) (cit. on p. 25).

[Moy13] BryonMoyer. Real World Multicore Embedded Systems. Newnes, 2013 (cit. on
p. 6).

[MRC05] Miguel Masmano, Ismael Ripoll, and Alfons Crespo. “An overview of the
XtratuMnanokernel”. In: Proceedings of the 1st Workshop on Operating System
Platforms for Embedded Real-Time Applications (OSPERT). 2005 (cit. on pp. 17,
146).

[MS13] Hisao Munakata and Tsugikazu Shibata. The Economic Value of the Long-
Term Support Initiative (LTSI). Linux Foundation. 2013 (cit. on p. 161).

[Mül+14] Rainer Müller, Daniel Danner, Wolfgang Schröder-Preikschat, and Daniel
Lohmann. “MultiSloth: An Efficient Multi-Core RTOS using Hardware-
Based Scheduling”. In: Proceedings of the 26th Euromicro Conference on Real-
Time Systems (ECRTS ’14) (Madrid, Spain). Washington, DC, USA: IEEE
Computer Society Press, 2014, pp. 289–198 (cit. on p. 100).

[Mur+19] Emerson Murphy-Hill, Edward K. Smith, Caitlin Sadowski, et al. “Do De-
velopers Discover New Tools on the Toilet?” In: Proceedings of the 41st
International Conference on Software Engineering. ICSE. 2019 (cit. on p. 89).

[MW09] AndrewMeneely and LaurieWilliams. “Secure open source collaboration:
an empirical study of Linus’ law”. In: Proceedings of the 16th ACM conference
on Computer and communications security. 2009 (cit. on p. 58).

[OSADL14] OSADL eG. SIL2LinuxMP – Letter of Intent V11. 2014 (cit. on p. 12).

182 References

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache attacks and counter-
measures: the case of AES”. In: Cryptographers’ track at the RSA conference.
Springer. 2006, pp. 1–20 (cit. on p. 118).

[PG74] Gerald J Popek and Robert P Goldberg. “Formal requirements for virtual-
izable third generation architectures”. In: Communications of the ACM 17.7
(1974), pp. 412–421 (cit. on pp. 103, 115).

[Pin+14] Sandro Pinto, Daniel Oliveira, Jorge Pereira, et al. “Towards a lightweight
embedded virtualization architecture exploiting arm trustzone”. In: 2014
IEEE Emerging Technology and Factory Automation (ETFA). IEEE. 2014 (cit.
on pp. 17, 146).

[Pin+17] Sandro Pinto, Jorge Pereira, Tiago Gomes, Adriano Tavares, and Jorge
Cabral. “LTZVisor: TrustZone is the key”. In: 29th Euromicro Conference on
Real-Time Systems (ECRTS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik. 2017 (cit. on p. 17).

[PMB18] Andreas Platschek, Nicholas Mc Guire, and Lukas Bulwahn. “Certifying
Linux: Lessons Learned in Three Years of SIL2LinuxMP”. In: Proceedings
of the Embedded World Conference. 2018 (cit. on pp. 10, 12, 13, 112).

[Pro+18] Andrew Prout, William Arcand, David Bestor, et al. “Measuring the Im-
pact of Spectre and Meltdown”. In: 2018 IEEE High Performance extreme
Computing Conference (HPEC). IEEE. 2018, pp. 1–5 (cit. on p. 138).

[PRT20] Linux Kernel PreemptRT real-time extension. 2020. URL: https://rt.wiki.
kernel.org (cit. on pp. 9, 123, 160, 163).

[Qui+09] Morgan Quigley, Ken Conley, Brian Gerkey, et al. “ROS: an open-source
Robot Operating System”. In: ICRA workshop on open source software. Vol. 3.
3.2. Kobe, Japan. 2009, p. 5 (cit. on pp. 5, 99).

[Ray99] Eric Raymond. “The cathedral and the bazaar”. In: Knowledge, Technology
& Policy 12.3 (1999) (cit. on p. 77).

[RH07] AndrewRosenberg and JuliaHirschberg. “V-measure:A conditional entropy-
based external cluster evaluationmeasure”. In: Proceedings of the 2007 joint
conference on empirical methods in natural language processing and computa-
tional natural language learning (EMNLP-CoNLL). 2007 (cit. on p. 43).

[Rie16] Rik van Riel. “Real-time KVM from the ground up”. In: LinuxCon NA. 2016
(cit. on pp. 17, 123, 134).

[RMF19] Federico Reghenzani, Giuseppe Massari, and William Fornaciari. “The
real-time linux kernel: A survey on Preempt_RT”. In: ACM Computing
Surveys 52 (Feb. 2019), pp. 1–36 (cit. on p. 9).

Related Work 183

https://rt.wiki.kernel.org
https://rt.wiki.kernel.org

[Rom85] G-C Roman. “A taxonomy of current issues in requirements engineering”.
In: Computer 4 (1985), pp. 14–23 (cit. on p. 3).

[Rut06] Joanna Rutkowska. “Introducing blue pill”. In: The official blog of the invisi-
blethings.org (2006) (cit. on p. 111).

[Sæb+09] Andreas Sæbjørnsen, JeremiahWillcock, Thomas Panas, Daniel Quinlan,
and Zhendong Su. “Detecting code clones in binary executables”. In: Pro-
ceedings of the eighteenth international symposium on Software testing and
analysis. 2009 (cit. on p. 52).

[Sch+08] Adrian Schüpbach, Simon Peter, Andrew Baumann, et al. “Embracing
diversity in the Barrelfish manycore operating system”. In: Proceedings of
the Workshop on Managed Many-Core Systems. Vol. 27. 2008 (cit. on p. 147).

[Sch+19a] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, et al. “RIDL:
Rogue In-flight Data Load”. In: S&P. May 2019 (cit. on pp. 19, 109, 110, 115,
117, 121).

[Sch+19b] Michael Schwarz, Moritz Lipp, Daniel Moghimi, et al. “ZombieLoad: Cross-
Privilege-Boundary Data Sampling”. In: Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security. CCS. 2019 (cit. on
pp. 83, 91).

[Sco+20] Claudio Scordino, Ida Maria Savino, Luca Cuomo, et al. “Real-Time Vir-
tualization For Industrial Automation”. In: 2020 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). Vol. 1.
IEEE. 2020, pp. 353–360 (cit. on p. 145).

[SH09] Randy Smith and Susan Horwitz. “Detecting and measuring similarity
in code clones”. In: Proceedings of the International Workshop on Software
Clones (IWSC). 2009 (cit. on p. 35).

[SK10a] Udo Steinberg and Bernhard Kauer. “NOVA: A Microhypervisor-based
Secure Virtualization Architecture”. In: Proceedings of the 5th European
Conference on Computer Systems. EuroSys ’10. 2010 (cit. on p. 17).

[SK10b] Udo Steinberg and Bernhard Kauer. “NOVA: a microhypervisor-based
secure virtualization architecture”. In: Proceedings of the 5th European con-
ference on Computer systems. ACM. 2010, pp. 209–222 (cit. on p. 112).

[SMR08] Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. Intro-
duction to information retrieval. Vol. 39. 2008 (cit. on pp. 35, 43, 44).

[SN05] Jim Smith and Ravi Nair. Virtual machines: versatile platforms for systems
and processes. Elsevier, 2005 (cit. on p. 103).

184 References

[SPL95] Olin Sibert, Phillip A Porras, and Robert Lindell. “The Intel 80x86 proces-
sor architecture: pitfalls for secure systems”. In: Proceedings of the 1995
Symposium on Security and Privacy. IEEE. 1995, pp. 211–222 (cit. on p. 118).

[SSL12] Muhammad Shahzad, Muhammad Zubair Shafiq, and Alex X Liu. “A large
scale exploratory analysis of software vulnerability life cycles”. In: 34th
International Conference on Software Engineering. ICSE. 2012 (cit. on p. 85).

[The20] The Kernel Community. Submitting patches: the essential guide to getting
your code into the kernel. 2020 (cit. on pp. 62, 78).

[UNR+05] RichUhlig, GilNeiger,DionRodgers, et al. “Intel virtualization technology”.
In: Computer 38.5 (2005) (cit. on pp. 18, 105, 109, 114, 117, 134, 148).

[Val+07] Giuseppe Valetto, Mary Helander, Kate Ehrlich, et al. “Using Software
Repositories to Investigate Socio-technical Congruence in Development
Projects”. In: Proceedings of the 4th International Workshop on Mining Soft-
ware Repositories. MSR’07. 2007 (cit. on p. 27).

[Van+18] Jo Van Bulck, Marina Minkin, OfirWeisse, et al. “Foreshadow: Extracting
the Keys to the Intel SGX Kingdomwith Transient Out-of-Order Execution”.
In: Proceedings of the 27th USENIX Security Symposium. See also technical
report Foreshadow-NG [Wei+18]. USENIX Association, Aug. 2018 (cit. on
pp. 19, 77, 109, 115, 117, 120, 185).

[Ves07] Steve Vestal. “Preemptive scheduling of multi-criticality systems with
varying degrees of execution time assurance”. In: 28th IEEE International
Real-Time Systems Symposium (RTSS). 2007 (cit. on p. 146).

[Vya13] Valeriy Vyatkin. “Software Engineering in Industrial Automation: State-of-
the-art Review”. In: IEEE Transactions on Industrial Informatics 9.3 (2013)
(cit. on p. 1).

[Wei+18] OfirWeisse, Jo Van Bulck, Marina Minkin, et al. “Foreshadow-NG: Break-
ing the Virtual Memory Abstraction with Transient Out-of-Order Execu-
tion”. In: Technical report (2018). See also USENIX Security paper Fore-
shadow [Van+18] (cit. on pp. 19, 77, 109, 110, 115, 117, 120, 185).

[Wen+15] Thomas F.Wendt, Wolfgang Bernhart, Jiten Behl, Dagan Mishoulam, and
Ethan Goldsmith. “Consolidation in Vehicle Electronic Architectures”. In:
Think Act (July 2015) (cit. on p. 3).

[Wir71] NiklausWirth. “Program development by stepwise refinement”. In: Com-
munications of the ACM 14.4 (1971) (cit. on pp. 25, 27).

[Wol94] Wayne H.Wolf. “Hardware-Software Co-Design of Embedded Systems”.
In: Proceedings of the IEEE 82.7 (1994), pp. 967–989 (cit. on p. 4).

Related Work 185

[Xi+11] Sisu Xi, JustinWilson, Chenyang Lu, and Christopher Gill. “RT-Xen: To-
wards real-time hypervisor scheduling in Xen”. In: 2011 Proceedings of the
Ninth ACM International Conference on Embedded Software (EMSOFT). Oct.
2011 (cit. on pp. 17, 146).

[YF14] Yuval Yarom and Katrina Falkner. “FLUSH+RELOAD: a High Resolution,
Low Noise, L3 Cache Side-Channel Attack”. In: 23rd USENIX Security Sym-
posium. 2014, pp. 719–732 (cit. on pp. 110, 118, 119).

[Yod99] Victor Yodaiken. “The rtlinux manifesto”. In: Proceedings of the 5th Linux
Expo. 1999 (cit. on p. 9).

[Yun+14] Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni.
“PALLOC: DRAM Bank-Aware Memory Allocator for Performance Isola-
tion on Multicore Platforms”. In: 2014 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE. 2014, pp. 155–166
(cit. on p. 13).

[Zyn19] Marc Zyngier. personal communication. Dec. 2019 (cit. on p. 85).

186 References

List of Figures

1.1. Evolution of processors since 1975 . 6
1.2. SIL2LinuxMP architecture proposal . 12
1.3. Structure of this thesis . 21

2.1. Typical patch integration workflow. 28
2.2. Illustration of the generation of patch clusters 36
2.3. Boxplot of irrelevant parameters . 44
2.4. Illustration of the influence of other parameters 45
2.5. eCDF if the integration duration of patches on the LKML 46
2.6. Evaluation of the Plus-Minus-based approach 48

3.1. Linux development timeline . 61
3.2. Clusters of similar patches . 63
3.3. Composition of type of patches on Linux kernel mailing lists 68
3.4. Regular and ignored patches between v3.0 and v5.10 69
3.5. Ratio of ignored patches per week between v3.0 and v5.10 69
3.6. Regular and ignored patches between v3.0 and v5.10 on the top four high

patch traffic lists. 70
3.7. Ratio of ignored patches between v3.0 and v5.10 on the top four high patch

traffic lists. 71
3.8. All mailing lists: Fraction of (in-)correctly and unintegrated patches. . . . 74
3.9. Top four high-volume mailing lists: Fraction of (in-)correctly and uninte-

grated patches. 75
3.10. Disclosing secret integration channels . 79
3.11. Public observable and non-public integration channels 81

4.1. Activation sequence of the Jailhouse hypervisor 113
4.2. Ideal Hardware Partitioning . 116
4.3. Hardware Partitioning on Real Hardware 116

5.1. Different measurement setups for the ICR MSR measurement 136
5.2. Histogram of the execution time of the ICR MSR measurement 137
5.3. Schedule of cyclictest . 139
5.4. Intel® Xeon® E5-2683 v4: Latency histogram 140
5.5. Nvidia Jetson TX1: Latency histogram . 143
5.6. A multi-copter platform that runs on the Jailhouse hypervisor 149

A.1. Preempt-RT patch stack: Evolution of the stack size. 162

List of Figures 187

A.2. Preempt-RT patch stack: Distribution of integration duration 163
A.3. Preempt-RTpatch stack: Comparing the composition of the lastmajor releases. 164

List of Tables

2.1. Set of parameters used for evaluation. 43

3.1. Ratio of ignored patches per year. 66
3.2. Composition of all unique patches on all mailing lists. 67
3.3. A list of vulnerabilities that were detected by PaStA. 84

5.1. Interrupt reinjection latency on the Nvidia Jetson TX1 134
5.2. Cyclictest on a Intel® Xeon® E5-2683 v4 platform 141
5.3. Cyclictest on an ARM64 Nvidia Jetson TX1 platform 144

List of Listings

2.1. Example of an mapping that was found by PaStA. 33

3.1. The APPLETALK and NETWORKING DRIVERS section in MAINTAINERS. . 59

5.1. Fast IRQ response to toggle a GPIO . 132
5.2. The core of the measurement of the ICR write duration. 135

List of Algorithms

1. Measure the similarity of two patches. 39

188

Ralf Stefan Ramsauer
Curriculum Vitæ

Ralf Ramsauer
Dienstadresse Ostbayerische Technische Hochschule Regensburg, Labor für Digitalisierung

Galgenbergstraße 32, 93053 Regensburg
E-Mail ralf.ramsauer@oth-regensburg.de

AkademischerWerdegang
1996–2000 Grundschule, Grund- und Teilhauptschule Weiherhammer
2000–2009 Abitur, Kepler-Gymnasium Weiden

Oktober 2009
–Februar 2013

Studium: Technische Informatik, B. Sc.,
Hochschule Regensburg, Bester Abschluss desWintersemester 2013

März 2013
–September 2015

Studium: Applied Research in Engineering Sciences, M. Sc.,
Ostbayerische Technische Hochschule Regensburg

November 2015
–

Wissenschaftlicher Mitarbeiter,
Labor für Digitalisierung, Ostbayerische Technische Hochschule Regensburg

Forschungsaufenthalte
Oktober 2014

–Dezember 2014
Forschungsaufenthalt, School of Electrical Engineering, Tel Aviv University

Lehrerfahrung
08/2017–02/2018 Lehrbeauftragter, Ostbayerische Technische Hochschule, Regensburg

Theoretische Informatik

Forschungsinteressen
(Echtzeit-)Betriebssysteme, Statische Hardwarepartitionierung, Echtzeitvirtualisierung,
Quantitatives Softwareengineering

	Half-title
	Titlepage
	Abstract
	Kurzfassung
	Danksagungen
	Contents
	1 Introduction
	1.1 Consolidation of Systems
	1.2 Safety-Critical Systems and Open Source
	1.2.1 Requirements
	1.2.2 Related Approaches

	1.3 Research Context of this Thesis
	1.3.1 Safety-Critical Systems, oss and Certification
	1.3.2 Mixed-Criticality Systems, oss and System Architecture

	1.4 Structure

	I Reconstruction and Analysis of Software Development Processes
	2 Reconstruction
	2.1 Overview
	2.2 Fundamentals
	2.3 Clustering Similar Patches
	2.3.1 Rating Similarity of Two Patches
	2.3.2 Parameters
	2.3.3 Reduction of problem space and clustering patches
	2.3.4 Working with Mailing List Data

	2.4 Evaluation
	2.4.1 External Evaluation
	2.4.2 Example: Duration of patch integration
	2.4.3 Comparison to Other Approaches

	2.5 Discussion
	2.5.1 The Algorithm
	2.5.2 Plus-Minus-based approach
	2.5.3 Performance

	2.6 Threats to Validity
	2.6.1 Internal Validity
	2.6.2 External Validity
	2.6.3 Construct Validity

	2.7 Related Work
	2.7.1 Reconstruction of Development Processes
	2.7.2 Distinction from Code Clone Detection

	2.8 Summary and Conclusion

	3 Analysis
	3.1 Structure
	3.2 Linux Kernel Development Process
	3.2.1 Core Characteristics
	3.2.2 Organigram and Areas of Responsibility
	3.2.3 Lifecycle Management
	3.2.4 Exceptional Vulnerability Handling
	3.2.5 Formalisation

	3.3 Extraction of Development Characteristics
	3.3.1 Ignored Patches
	3.3.2 Conform Integration of Patches

	3.4 Violation of Development Processes
	3.4.1 Secret Integration Channels
	3.4.2 Analysis
	3.4.3 Related Work
	3.4.4 Acknowledgements

	3.5 Discussion
	3.5.1 Validity
	3.5.2 Consequences

	3.6 Summary

	II System Consolidation of Safety- and Mixed-Critical Systems
	4 Ideal Hardware Partitioning
	4.1 Requirements on Ideal Hardware Partitioning
	4.1.1 Efficiency of vmm
	4.1.2 Architectural System Limitations
	4.1.3 Device Specific Requirements
	4.1.4 Platform Specific Requirements

	4.2 The Jailhouse Hypervisor: Philosophy and Architecture
	4.2.1 Overview
	4.2.2 Hardware and Software Support

	4.3 Cross-domain Protection Against Speculative Execution Exploits
	4.3.1 Attacks and Mitigations
	4.3.2 Jailhouse and Speculative Execution Attacks

	5 Evaluation and Discussion
	5.1 Hypervisor Activity
	5.1.1 Common Hypervisor Activity
	5.1.2 Hypervisor Activity on x86 Platforms
	5.1.3 Hypervisor Activity on arm Platforms

	5.2 Evaluation
	5.2.1 Hypervisor Overhead
	5.2.2 arm: The Cost of Interrupt Reinjection
	5.2.3 x86: The Cost of the Moderation of accesses to msr
	5.2.4 The Cost of Spectre Mitigations

	5.3 Discussion
	5.3.1 The Jailhouse Approach
	5.3.2 Hardware Limitations
	5.3.3 Speculative Execution and Static Hardware Partitioning

	5.4 Smoke Test
	5.5 Summary

	6 Summary, Conclusions and Further Ideas
	6.1 Summary of the Thesis and Conclusion
	6.1.1 Software Engineering
	6.1.2 System Engineering

	6.2 Further Ideas

	A Appendix
	A.1 Quantification of Mainlining Efforts
	A.1.1 Approach
	A.1.2 Discussion
	A.1.3 Conclusion

	Lists
	Acronyms
	References
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	Lebenslauf

