1,842 research outputs found

    Detection of network anomalies and novel attacks in the internet via statistical network traffic separation and normality prediction

    Get PDF
    With the advent and the explosive growth of the global Internet and the electronic commerce environment, adaptive/automatic network and service anomaly detection is fast gaining critical research and practical importance. If the next generation of network technology is to operate beyond the levels of current networks, it will require a set of well-designed tools for its management that will provide the capability of dynamically and reliably identifying network anomalies. Early detection of network anomalies and performance degradations is a key to rapid fault recovery and robust networking, and has been receiving increasing attention lately. In this dissertation we present a network anomaly detection methodology, which relies on the analysis of network traffic and the characterization of the dynamic statistical properties of traffic normality, in order to accurately and timely detect network anomalies. Anomaly detection is based on the concept that perturbations of normal behavior suggest the presence of anomalies, faults, attacks etc. This methodology can be uniformly applied in order to detect network attacks, especially in cases where novel attacks are present and the nature of the intrusion is unknown. Specifically, in order to provide an accurate identification of the normal network traffic behavior, we first develop an anomaly-tolerant non-stationary traffic prediction technique, which is capable of removing both pulse and continuous anomalies. Furthermore we introduce and design dynamic thresholds, and based on them we define adaptive anomaly violation conditions, as a combined function of both the magnitude and duration of the traffic deviations. Numerical results are presented that demonstrate the operational effectiveness and efficiency of the proposed approach, under different anomaly traffic scenarios and attacks, such as mail-bombing and UDP flooding attacks. In order to improve the prediction accuracy of the statistical network traffic normality, especially in cases where high burstiness is present, we propose, study and analyze a new network traffic prediction methodology, based on the frequency domain traffic analysis and filtering, with the objective_of enhancing the network anomaly detection capabilities. Our approach is based on the observation that the various network traffic components, are better identified, represented and isolated in the frequency domain. As a result, the traffic can be effectively separated into a baseline component, that includes most of the low frequency traffic and presents low burstiness, and the short-term traffic that includes the most dynamic part. The baseline traffic is a mean non-stationary periodic time series, and the Extended Resource-Allocating Network (BRAN) methodology is used for its accurate prediction. The short-term traffic is shown to be a time-dependent series, and the Autoregressive Moving Average (ARMA) model is proposed to be used for the accurate prediction of this component. Furthermore, it is demonstrated that the proposed enhanced traffic prediction strategy can be combined with the use of dynamic thresholds and adaptive anomaly violation conditions, in order to improve the network anomaly detection effectiveness. The performance evaluation of the proposed overall strategy, in terms of the achievable network traffic prediction accuracy and anomaly detection capability, and the corresponding numerical results demonstrate and quantify the significant improvements that can be achieved

    Autonomic Parameter Tuning of Anomaly-Based IDSs: an SSH Case Study

    Get PDF
    Anomaly-based intrusion detection systems classify network traffic instances by comparing them with a model of the normal network behavior. To be effective, such systems are expected to precisely detect intrusions (high true positive rate) while limiting the number of false alarms (low false positive rate). However, there exists a natural trade-off between detecting all anomalies (at the expense of raising alarms too often), and missing anomalies (but not issuing any false alarms). The parameters of a detection system play a central role in this trade-off, since they determine how responsive the system is to an intrusion attempt. Despite the importance of properly tuning the system parameters, the literature has put little emphasis on the topic, and the task of adjusting such parameters is usually left to the expertise of the system manager or expert IT personnel. In this paper, we present an autonomic approach for tuning the parameters of anomaly-based intrusion detection systems in case of SSH traffic. We propose a procedure that aims to automatically tune the system parameters and, by doing so, to optimize the system performance. We validate our approach by testing it on a flow-based probabilistic detection system for the detection of SSH attacks

    Comparing the Effectiveness of Different Classification Techniques in Predicting DNS Tunnels

    Get PDF
    DNS is one of the most widely used protocols on the internet and is used in the translation of domain names into IP address in order to correctly route messages between computers. It presents an attractive attack vector for criminals as the service is not as closely monitored by security experts as other protocols such as HTTP or FTP. Its use as a covert means of communication has increased with the availability of tools that allow for the creation of DNS tunnels using the protocol. One of the primary motivations for using DNS tunnels is the illegal extraction of information from a company’s network. This can lead to reputational damage for the organisation and result in significant fines – particularly with the introduction of General Data Protection Regulations in the EU. Most of the research into the detection of DNS tunnels has used anomalies in the relationship between DNS requests and other protocols, or anomalies in the rate of DNS requests made over specific time periods. This study will look at the characteristics of an individual DNS requests to see how effective different classification techniques are at identifying tunnels. The different techniques selected are Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and Support Vector Machine (SVM). The effectiveness of the different techniques will be measured and compared to see if there are statistically significant differences between them using a Cochran’s Q test. The results will indicate that DT, RF and SVM, are the most effective techniques at categorising DNS requests, and that they are significantly different to the other models. Key Words: DNS Tunnel, Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, Cochran’s Q Test

    Lightweight IPv6 network probing detection framework

    Get PDF
    corecore