7,338 research outputs found

    The Direct Detection of Boosted Dark Matter at High Energies and PeV events at IceCube

    Full text link
    We study the possibility of detecting dark matter directly via a small but energetic component that is allowed within present-day constraints. Drawing closely upon the fact that neutral current neutrino nucleon interactions are indistinguishable from DM-nucleon interactions at low energies, we extend this feature to high energies for a small, non-thermal but highly energetic population of DM particle χ\chi, created via the decay of a significantly more massive and long-lived non-thermal relic ϕ\phi, which forms the bulk of DM. If χ\chi interacts with nucleons, its cross-section, like the neutrino-nucleus coherent cross-section, can rise sharply with energy leading to deep inelastic scattering, similar to neutral current neutrino-nucleon interactions at high energies. Thus, its direct detection may be possible via cascades in very large neutrino detectors. As a specific example, we apply this notion to the recently reported three ultra-high energy PeV cascade events clustered around 121-2 PeV at IceCube (IC). We discuss the features which may help discriminate this scenario from one in which only astrophysical neutrinos constitute the event sample in detectors like IC.Comment: v1: 6 pages, 4 figures; v2: More references added, minor text changes for clarification; v3: Title change, major revision, updated references; v4: Corrected Fig. 1b, Version published in JCA

    Neutrinos in IceCube/KM3NeT as probes of Dark Matter Substructures in Galaxy Clusters

    Full text link
    Galaxy clusters are one of the most promising candidate sites for dark matter annihilation. We focus on dark matter with mass in the range 10 GeV - 100 TeV annihilating to muon pairs, neutrino pairs, top pairs, or two neutrino pairs, and forecast the expected sensitivity to the annihilation cross section into these channels by observing galaxy clusters at IceCube/KM3NeT. Optimistically, the presence of dark matter substructures in galaxy clusters is predicted to enhance the signal by 2-3 orders of magnitude over the contribution from the smooth component of the dark matter distribution. Optimizing for the angular size of the region of interest for galaxy clusters, the sensitivity to the annihilation cross section of heavy DM with mass in the range 300 GeV - 100 TeV will be of the order of 10^{-24} cm^3 s^{-1}, for full IceCube/KM3NeT live time of 10 years, which is about one order of magnitude better than the best limit that can be obtained by observing the Milky Way halo. We find that neutrinos from cosmic ray interactions in the galaxy cluster, in addition to the atmospheric neutrinos, are a source of background. We show that significant improvement in the experimental sensitivity can be achieved for lower DM masses in the range 10 GeV - 300 GeV if neutrino-induced cascades can be reconstructed to approximately 5 degrees accuracy, as may be possible in KM3NeT. We therefore propose that a low-energy extension "KM3NeT-Core", similar to DeepCore in IceCube, be considered for an extended reach at low DM masses.Comment: v2: 17 pages, 5 figures. Neutrino spectra corrected, dependence on dark matter substructure model included, references added. Results unchanged. Accepted in PR

    Galaxy Clusters as Reservoirs of Heavy Dark Matter and High-Energy Cosmic Rays: Constraints from Neutrino Observations

    Full text link
    Galaxy Clusters (GCs) are the largest reservoirs of both dark matter and cosmic rays (CRs). Dark matter self-annihilation can lead to a high luminosity in gamma rays and neutrinos, enhanced by a strong degree of clustering in dark matter substructures. Hadronic CR interactions can also lead to a high luminosity in gamma rays and neutrinos, enhanced by the confinement of CRs from cluster accretion/merger shocks and active galactic nuclei. We show that IceCube/KM3Net observations of high-energy neutrinos can probe the nature of GCs and the separate dark matter and CR emission processes, taking into account how the results depend on the still-substantial uncertainties. Neutrino observations are relevant at high energies, especially at >10 TeV. Our results should be useful for improving experimental searches for high-energy neutrino emission. Neutrino telescopes are sensitive to extended sources formed by dark matter substructures and CRs distributed over large scales. Recent observations by Fermi and imaging atmospheric Cherenkov telescopes have placed interesting constraints on the gamma-ray emission from GCs. We also provide calculations of the gamma-ray fluxes, taking into account electromagnetic cascades inside GCs, which can be important for injections at sufficiently high energies. This also allows us to extend previous gamma-ray constraints to very high dark matter masses and significant CR injections at very high energies. Using both neutrinos and gamma rays, which can lead to comparable constraints, will allow more complete understandings of GCs. Neutrinos are essential for some dark matter annihilation channels, and for hadronic instead of electronic CRs. Our results suggest that the multi-messenger observations of GCs will be able to give useful constraints on specific models of dark matter and CRs. [Abstract abridged.]Comment: 31 pages, 20 figures, 1 table, accepted for publication in JCAP, references and discussions adde

    Stealth Supersymmetry

    Full text link
    We present a broad class of supersymmetric models that preserve R-parity but lack missing energy signatures. These models have new light particles with weak-scale supersymmetric masses that feel SUSY breaking only through couplings to the MSSM. This small SUSY breaking leads to nearly degenerate fermion/boson pairs, with small mass splittings and hence small phase space for decays carrying away invisible energy. The simplest scenario has low-scale SUSY breaking, with missing energy only from soft gravitinos. This scenario is natural, lacks artificial tunings to produce a squeezed spectrum, and is consistent with gauge coupling unification. The resulting collider signals will be jet-rich events containing false resonances that could resemble signatures of R-parity violation. We discuss several concrete examples of the general idea, and emphasize gamma + jet + jet resonances, displaced vertices, and very large numbers of b-jets as three possible discovery modes.Comment: 12 pages, 4 figure

    Supersymmetry in the shadow of photini

    Full text link
    Additional neutral gauge fermions -- "photini" -- arise in string compactifications as superpartners of U(1) gauge fields. Unlike their vector counterparts, the photini can acquire weak-scale masses from soft SUSY breaking and lead to observable signatures at the LHC through mass mixing with the bino. In this work we investigate the collider consequences of adding photini to the neutralino sector of the MSSM. Relatively large mixing of one or more photini with the bino can lead to prompt decays of the lightest ordinary supersymmetric particle; these extra cascades transfer most of the energy of SUSY decay chains into Standard Model particles, diminishing the power of missing energy as an experimental handle for signal discrimination. We demonstrate that the missing energy in SUSY events with photini is reduced dramatically for supersymmetric spectra with MSSM neutralinos near the weak scale, and study the effects on limits set by the leading hadronic SUSY searches at ATLAS and CMS. We find that in the presence of even one light photino the limits on squark masses from hadronic searches can be reduced by 400 GeV, with comparable (though more modest) reduction of gluino mass limits. We also consider potential discovery channels such as dilepton and multilepton searches, which remain sensitive to SUSY spectra with photini and can provide an unexpected route to the discovery of supersymmetry. Although presented in the context of photini, our results apply in general to theories in which additional light neutral fermions mix with MSSM gauginos.Comment: 23 pages, 8 figures, references adde

    Full photon statistics of a light beam transmitted through an optomechanical system

    Full text link
    In this paper, we study the full statistics of photons transmitted through an optical cavity coupled to nanomechanical motion. We analyze the entire temporal evolution of the photon correlations, the Fano factor, and the effects of strong laser driving, all of which show pronounced features connected to the mechanical backaction. In the regime of single-photon strong coupling, this allows us to predict a transition from sub-Poissonian to super-Poissonian statistics for larger observation time intervals. Furthermore, we predict cascades of transmitted photons triggered by multi-photon transitions. In this regime, we observe Fano factors that are drastically enhanced due to the mechanical motion.Comment: 8 pages, 7 figure

    Search for Higgs bosons of the Universal Extra Dimensions at the Large Hadron Collider

    Full text link
    The Higgs sector of the Universal Extra Dimensions (UED) has a rather involved setup. With one extra space dimension, the main ingredients to the construct are the higher Kaluza-Klein (KK) excitations of the Standard Model Higgs boson and the fifth components of the gauge fields which on compactification appear as scalar degrees of freedom and can mix with the former thus leading to physical KK-Higgs states of the scenario. In this work, we explore in detail the phenomenology of such a Higgs sector of the UED with the Large Hadron Collider (LHC) in focus. We work out relevant decay branching fractions involving the KK-Higgs excitations. Possible production modes of the KK-Higgs bosons are then discussed with an emphasis on their associated production with the third generation KK-quarks and that under the cascade decays of strongly interacting UED excitations which turn out to be the only phenomenologically significant modes. It is pointed out that the collider searches of such Higgs bosons face generic hardship due to soft end-products which result from severe degeneracies in the masses of the involved excitations in the minimal version of the UED (MUED). Generic implications of either observing some or all of the KK-Higgs bosons at the LHC are discussed.Comment: 25 pages, 9 figures and 1 tabl

    Observations of diffuse fluxes of cosmic neutrinos

    Full text link
    In this contribution the current observational results for the diffuse flux of high-energy astrophysical neutrinos are reviewed. In order to understand the science implications, the measurements in different detection channels are discussed and results are compared. The discussion focuses is the energy spectrum, the flavor ratio and large scale anisotropy.Comment: Prepared for "Neutrino Astronomy - Current Status, Future Prospects" (World Scientific) Edited by: Thomas Gaisser (University of Delaware, USA), Albrecht Karle (University of Wisconsin-Madison, USA

    Search for Higgs Bosons in SUSY Cascade Decays and Neutralino Dark Matter

    Full text link
    The Minimal Supersymmetric Extension of the Standard Model (MSSM) is a well motivated theoretical framework, which contains an extended Higgs sector, including a light Higgs with Standard Model-like properties in most of the parameter space. Due to the large QCD background, searches for such a Higgs, decaying into a pair of bottom quarks, is very challenging at the LHC. It has been long realized that the situation may be ameliorated by searching for Higgs bosons in supersymmetric decay chains. Moreover, it has been recently suggested that the bobber decay channel may be observed in standard production channels by selecting boosted Higgs bosons, which may be easily identified from the QCD background. Such boosted Higgs bosons are frequent in the MSSM, since they are produced from decays of heavy colored supersymmetric particles. Previous works have emphasized the possibility of observing boosted Higgs bosons in the light higgsino region. In this work, we study the same question in the regions of parameter space consistent with a neutralino dark matter relic density, analyzing its dependence on the non-standard Higgs boson, slepton and squark masses, as well as on the condition of gaugino mass unification. In general, we conclude that, provided sleptons are heavier than the second lightest neutralinos, the presence of boosted Higgs is a common MSSM feature, implying excellent prospects for observation of the light MSSM Higgs boson in the near future.Comment: 30 pages, 9 figures. v2: New Xenon 100 results implemented, version to appear in PR
    corecore