3,425 research outputs found

    GRASE: Granulometry Analysis with Semi Eager Classifier to Detect Malware

    Get PDF
    Technological advancement in communication leading to 5G, motivates everyone to get connected to the internet including ‘Devices’, a technology named Web of Things (WoT). The community benefits from this large-scale network which allows monitoring and controlling of physical devices. But many times, it costs the security as MALicious softWARE (MalWare) developers try to invade the network, as for them, these devices are like a ‘backdoor’ providing them easy ‘entry’. To stop invaders from entering the network, identifying malware and its variants is of great significance for cyberspace. Traditional methods of malware detection like static and dynamic ones, detect the malware but lack against new techniques used by malware developers like obfuscation, polymorphism and encryption. A machine learning approach to detect malware, where the classifier is trained with handcrafted features, is not potent against these techniques and asks for efforts to put in for the feature engineering. The paper proposes a malware classification using a visualization methodology wherein the disassembled malware code is transformed into grey images. It presents the efficacy of Granulometry texture analysis technique for improving malware classification. Furthermore, a Semi Eager (SemiE) classifier, which is a combination of eager learning and lazy learning technique, is used to get robust classification of malware families. The outcome of the experiment is promising since the proposed technique requires less training time to learn the semantics of higher-level malicious behaviours. Identifying the malware (testing phase) is also done faster. A benchmark database like malimg and Microsoft Malware Classification challenge (BIG-2015) has been utilized to analyse the performance of the system. An overall average classification accuracy of 99.03 and 99.11% is achieved, respectively

    Speech-based automatic depression detection via biomarkers identification and artificial intelligence approaches

    Get PDF
    Depression has become one of the most prevalent mental health issues, affecting more than 300 million people all over the world. However, due to factors such as limited medical resources and accessibility to health care, there are still a large number of patients undiagnosed. In addition, the traditional approaches to depression diagnosis have limitations because they are usually time-consuming, and depend on clinical experience that varies across different clinicians. From this perspective, the use of automatic depression detection can make the diagnosis process much faster and more accessible. In this thesis, we present the possibility of using speech for automatic depression detection. This is based on the findings in neuroscience that depressed patients have abnormal cognition mechanisms thus leading to the speech differs from that of healthy people. Therefore, in this thesis, we show two ways of benefiting from automatic depression detection, i.e., identifying speech markers of depression and constructing novel deep learning models to improve detection accuracy. The identification of speech markers tries to capture measurable depression traces left in speech. From this perspective, speech markers such as speech duration, pauses and correlation matrices are proposed. Speech duration and pauses take speech fluency into account, while correlation matrices represent the relationship between acoustic features and aim at capturing psychomotor retardation in depressed patients. Experimental results demonstrate that these proposed markers are effective at improving the performance in recognizing depressed speakers. In addition, such markers show statistically significant differences between depressed patients and non-depressed individuals, which explains the possibility of using these markers for depression detection and further confirms that depression leaves detectable traces in speech. In addition to the above, we propose an attention mechanism, Multi-local Attention (MLA), to emphasize depression-relevant information locally. Then we analyse the effectiveness of MLA on performance and efficiency. According to the experimental results, such a model can significantly improve performance and confidence in the detection while reducing the time required for recognition. Furthermore, we propose Cross-Data Multilevel Attention (CDMA) to emphasize different types of depression-relevant information, i.e., specific to each type of speech and common to both, by using multiple attention mechanisms. Experimental results demonstrate that the proposed model is effective to integrate different types of depression-relevant information in speech, improving the performance significantly for depression detection

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks

    Full text link
    Transformer is a deep neural network that employs a self-attention mechanism to comprehend the contextual relationships within sequential data. Unlike conventional neural networks or updated versions of Recurrent Neural Networks (RNNs) such as Long Short-Term Memory (LSTM), transformer models excel in handling long dependencies between input sequence elements and enable parallel processing. As a result, transformer-based models have attracted substantial interest among researchers in the field of artificial intelligence. This can be attributed to their immense potential and remarkable achievements, not only in Natural Language Processing (NLP) tasks but also in a wide range of domains, including computer vision, audio and speech processing, healthcare, and the Internet of Things (IoT). Although several survey papers have been published highlighting the transformer's contributions in specific fields, architectural differences, or performance evaluations, there is still a significant absence of a comprehensive survey paper encompassing its major applications across various domains. Therefore, we undertook the task of filling this gap by conducting an extensive survey of proposed transformer models from 2017 to 2022. Our survey encompasses the identification of the top five application domains for transformer-based models, namely: NLP, Computer Vision, Multi-Modality, Audio and Speech Processing, and Signal Processing. We analyze the impact of highly influential transformer-based models in these domains and subsequently classify them based on their respective tasks using a proposed taxonomy. Our aim is to shed light on the existing potential and future possibilities of transformers for enthusiastic researchers, thus contributing to the broader understanding of this groundbreaking technology

    Automated identification and behaviour classification for modelling social dynamics in group-housed mice

    Get PDF
    Mice are often used in biology as exploratory models of human conditions, due to their similar genetics and physiology. Unfortunately, research on behaviour has traditionally been limited to studying individuals in isolated environments and over short periods of time. This can miss critical time-effects, and, since mice are social creatures, bias results. This work addresses this gap in research by developing tools to analyse the individual behaviour of group-housed mice in the home-cage over several days and with minimal disruption. Using data provided by the Mary Lyon Centre at MRC Harwell we designed an end-to-end system that (a) tracks and identifies mice in a cage, (b) infers their behaviour, and subsequently (c) models the group dynamics as functions of individual activities. In support of the above, we also curated and made available a large dataset of mouse localisation and behaviour classifications (IMADGE), as well as two smaller annotated datasets for training/evaluating the identification (TIDe) and behaviour inference (ABODe) systems. This research constitutes the first of its kind in terms of the scale and challenges addressed. The data source (side-view single-channel video with clutter and no identification markers for mice) presents challenging conditions for analysis, but has the potential to give richer information while using industry standard housing. A Tracking and Identification module was developed to automatically detect, track and identify the (visually similar) mice in the cluttered home-cage using only single-channel IR video and coarse position from RFID readings. Existing detectors and trackers were combined with a novel Integer Linear Programming formulation to assign anonymous tracks to mouse identities. This utilised a probabilistic weight model of affinity between detections and RFID pickups. The next task necessitated the implementation of the Activity Labelling module that classifies the behaviour of each mouse, handling occlusion to avoid giving unreliable classifications when the mice cannot be observed. Two key aspects of this were (a) careful feature-selection, and (b) judicious balancing of the errors of the system in line with the repercussions for our setup. Given these sequences of individual behaviours, we analysed the interaction dynamics between mice in the same cage by collapsing the group behaviour into a sequence of interpretable latent regimes using both static and temporal (Markov) models. Using a permutation matrix, we were able to automatically assign mice to roles in the HMM, fit a global model to a group of cages and analyse abnormalities in data from a different demographic

    ASFL-YOLOX: an adaptive spatial feature fusion and lightweight detection method for insect pests of the Papilionidae family

    Get PDF
    IntroductionInsect pests from the family Papilionidae (IPPs) are a seasonal threat to citrus orchards, causing damage to young leaves, affecting canopy formation and fruiting. Existing pest detection models used by orchard plant protection equipment lack a balance between inference speed and accuracy.MethodsTo address this issue, we propose an adaptive spatial feature fusion and lightweight detection model for IPPs, called ASFL-YOLOX. Our model includes several optimizations, such as the use of the Tanh-Softplus activation function, integration of the efficient channel attention mechanism, adoption of the adaptive spatial feature fusion module, and implementation of the soft Dlou non-maximum suppression algorithm. We also propose a structured pruning curation technique to eliminate unnecessary connections and network parameters.ResultsExperimental results demonstrate that ASFL-YOLOX outperforms previous models in terms of inference speed and accuracy. Our model shows an increase in inference speed by 29 FPS compared to YOLOv7-x, a higher mAP of approximately 10% than YOLOv7-tiny, and a faster inference frame rate on embedded platforms compared to SSD300 and Faster R-CNN. We compressed the model parameters of ASFL-YOLOX by 88.97%, reducing the number of floating point operations per second from 141.90G to 30.87G while achieving an mAP higher than 95%.DiscussionOur model can accurately and quickly detect fruit tree pest stress in unstructured orchards and is suitable for transplantation to embedded systems. This can provide technical support for pest identification and localization systems for orchard plant protection equipment

    Unveiling the frontiers of deep learning: innovations shaping diverse domains

    Full text link
    Deep learning (DL) enables the development of computer models that are capable of learning, visualizing, optimizing, refining, and predicting data. In recent years, DL has been applied in a range of fields, including audio-visual data processing, agriculture, transportation prediction, natural language, biomedicine, disaster management, bioinformatics, drug design, genomics, face recognition, and ecology. To explore the current state of deep learning, it is necessary to investigate the latest developments and applications of deep learning in these disciplines. However, the literature is lacking in exploring the applications of deep learning in all potential sectors. This paper thus extensively investigates the potential applications of deep learning across all major fields of study as well as the associated benefits and challenges. As evidenced in the literature, DL exhibits accuracy in prediction and analysis, makes it a powerful computational tool, and has the ability to articulate itself and optimize, making it effective in processing data with no prior training. Given its independence from training data, deep learning necessitates massive amounts of data for effective analysis and processing, much like data volume. To handle the challenge of compiling huge amounts of medical, scientific, healthcare, and environmental data for use in deep learning, gated architectures like LSTMs and GRUs can be utilized. For multimodal learning, shared neurons in the neural network for all activities and specialized neurons for particular tasks are necessary.Comment: 64 pages, 3 figures, 3 table

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence
    • …
    corecore