56 research outputs found

    Resiliency Assessment and Enhancement of Intrinsic Fingerprinting

    Get PDF
    Intrinsic fingerprinting is a class of digital forensic technology that can detect traces left in digital multimedia data in order to reveal data processing history and determine data integrity. Many existing intrinsic fingerprinting schemes have implicitly assumed favorable operating conditions whose validity may become uncertain in reality. In order to establish intrinsic fingerprinting as a credible approach to digital multimedia authentication, it is important to understand and enhance its resiliency under unfavorable scenarios. This dissertation addresses various resiliency aspects that can appear in a broad range of intrinsic fingerprints. The first aspect concerns intrinsic fingerprints that are designed to identify a particular component in the processing chain. Such fingerprints are potentially subject to changes due to input content variations and/or post-processing, and it is desirable to ensure their identifiability in such situations. Taking an image-based intrinsic fingerprinting technique for source camera model identification as a representative example, our investigations reveal that the fingerprints have a substantial dependency on image content. Such dependency limits the achievable identification accuracy, which is penalized by a mismatch between training and testing image content. To mitigate such a mismatch, we propose schemes to incorporate image content into training image selection and significantly improve the identification performance. We also consider the effect of post-processing against intrinsic fingerprinting, and study source camera identification based on imaging noise extracted from low-bit-rate compressed videos. While such compression reduces the fingerprint quality, we exploit different compression levels within the same video to achieve more efficient and accurate identification. The second aspect of resiliency addresses anti-forensics, namely, adversarial actions that intentionally manipulate intrinsic fingerprints. We investigate the cost-effectiveness of anti-forensic operations that counteract color interpolation identification. Our analysis pinpoints the inherent vulnerabilities of color interpolation identification, and motivates countermeasures and refined anti-forensic strategies. We also study the anti-forensics of an emerging space-time localization technique for digital recordings based on electrical network frequency analysis. Detection schemes against anti-forensic operations are devised under a mathematical framework. For both problems, game-theoretic approaches are employed to characterize the interplay between forensic analysts and adversaries and to derive optimal strategies. The third aspect regards the resilient and robust representation of intrinsic fingerprints for multiple forensic identification tasks. We propose to use the empirical frequency response as a generic type of intrinsic fingerprint that can facilitate the identification of various linear and shift-invariant (LSI) and non-LSI operations

    Adaptive spatial image steganography and steganalysis using perceptual modelling and machine learning

    Get PDF
    Image steganography is a method for communicating secret messages under the cover images. A sender will embed the secret messages into the cover images according to an algorithm, and then the resulting image will be sent to the receiver. The receiver can extract the secret messages with the predefined algorithm. To counter this kind of technique, image steganalysis is proposed to detect the presence of secret messages. After many years of development, current image steganography uses the adaptive algorithm for embedding the secrets, which automatically finds the complex area in the cover source to avoid being noticed. Meanwhile, image steganalysis has also been advanced to universal steganalysis, which does not require the knowledge of the steganographic algorithm. With the development of the computational hardware, i.e., Graphical Processing Units (GPUs), some computational expensive techniques are now available, i.e., Convolutional Neural Networks (CNNs), which bring a large improvement in the detection tasks in image steganalysis. To defend against the attacks, new techniques are also being developed to improve the security of image steganography, these include designing more scientific cost functions, the key in adaptive steganography, and generating stego images from the knowledge of the CNNs. Several contributions are made for both image steganography and steganalysis in this thesis. Firstly, inspired by the Ranking Priority Profile (RPP), a new cost function for adaptive image steganography is proposed, which uses the two-dimensional Singular Spectrum Analysis (2D-SSA) and Weighted Median Filter (WMF) in the design. The RPP mainly includes three rules, i.e., the Complexity-First rule, the Clustering rule and the Spreading rule, to design a cost function. The 2D-SSA is employed in selecting the key components and clustering the embedding positions, which follows the Complexity-First rule and the Clustering rule. Also, the Spreading rule is followed to smooth the resulting image produced by 2D-SSA with WMF. The proposed algorithm has improved performance over four benchmarking approaches against non-shared selection channel attacks. It also provides comparable performance in selection-channel-aware scenarios, where the best results are observed when the relative payload is 0.3 bpp or larger. The approach is much faster than other model-based methods. Secondly, for image steganalysis, to tackle more complex datasets that are close to the real scenarios and to push image steganalysis further to real-life applications, an Enhanced Residual Network with self-attention ability, i.e., ERANet, is proposed. By employing a more mathematically sophisticated way to extract more effective features in the images and the global self-Attention technique, the ERANet can further capture the stego signal in the deeper layers, hence it is suitable for the more complex situations in the new datasets. The proposed Enhanced Low-Level Feature Representation Module can be easily mounted on other CNNs in selecting the most representative features. Although it comes with a slightly extra computational cost, comprehensive experiments on the BOSSbase and ALASKA#2 datasets have demonstrated the effectiveness of the proposed methodology. Lastly, for image steganography, with the knowledge from the CNNs, a novel postcost-optimization algorithm is proposed. Without modifying the original stego image and the original cost function of the steganography, and no need for training a Generative Adversarial Network (GAN), the proposed method mainly uses the gradient maps from a well-trained CNN to represent the cost, where the original cost map of the steganography is adopted to indicate the embedding positions. This method will smooth the gradient maps before adjusting the cost, which solves the boundary problem of the CNNs having multiple subnets. Extensive experiments have been carried out to validate the effectiveness of the proposed method, which provides state-of-the-art performance. In addition, compared to existing work, the proposed method is effcient in computing time as well. In short, this thesis has made three major contributions to image steganography and steganalysis by using perceptual modelling and machine learning. A novel cost function and a post-cost-optimization function have been proposed for adaptive spatial image steganography, which helps protect the secret messages. For image steganalysis, a new CNN architecture has also been proposed, which utilizes multiple techniques for providing state of-the-art performance. Future directions are also discussed for indicating potential research.Image steganography is a method for communicating secret messages under the cover images. A sender will embed the secret messages into the cover images according to an algorithm, and then the resulting image will be sent to the receiver. The receiver can extract the secret messages with the predefined algorithm. To counter this kind of technique, image steganalysis is proposed to detect the presence of secret messages. After many years of development, current image steganography uses the adaptive algorithm for embedding the secrets, which automatically finds the complex area in the cover source to avoid being noticed. Meanwhile, image steganalysis has also been advanced to universal steganalysis, which does not require the knowledge of the steganographic algorithm. With the development of the computational hardware, i.e., Graphical Processing Units (GPUs), some computational expensive techniques are now available, i.e., Convolutional Neural Networks (CNNs), which bring a large improvement in the detection tasks in image steganalysis. To defend against the attacks, new techniques are also being developed to improve the security of image steganography, these include designing more scientific cost functions, the key in adaptive steganography, and generating stego images from the knowledge of the CNNs. Several contributions are made for both image steganography and steganalysis in this thesis. Firstly, inspired by the Ranking Priority Profile (RPP), a new cost function for adaptive image steganography is proposed, which uses the two-dimensional Singular Spectrum Analysis (2D-SSA) and Weighted Median Filter (WMF) in the design. The RPP mainly includes three rules, i.e., the Complexity-First rule, the Clustering rule and the Spreading rule, to design a cost function. The 2D-SSA is employed in selecting the key components and clustering the embedding positions, which follows the Complexity-First rule and the Clustering rule. Also, the Spreading rule is followed to smooth the resulting image produced by 2D-SSA with WMF. The proposed algorithm has improved performance over four benchmarking approaches against non-shared selection channel attacks. It also provides comparable performance in selection-channel-aware scenarios, where the best results are observed when the relative payload is 0.3 bpp or larger. The approach is much faster than other model-based methods. Secondly, for image steganalysis, to tackle more complex datasets that are close to the real scenarios and to push image steganalysis further to real-life applications, an Enhanced Residual Network with self-attention ability, i.e., ERANet, is proposed. By employing a more mathematically sophisticated way to extract more effective features in the images and the global self-Attention technique, the ERANet can further capture the stego signal in the deeper layers, hence it is suitable for the more complex situations in the new datasets. The proposed Enhanced Low-Level Feature Representation Module can be easily mounted on other CNNs in selecting the most representative features. Although it comes with a slightly extra computational cost, comprehensive experiments on the BOSSbase and ALASKA#2 datasets have demonstrated the effectiveness of the proposed methodology. Lastly, for image steganography, with the knowledge from the CNNs, a novel postcost-optimization algorithm is proposed. Without modifying the original stego image and the original cost function of the steganography, and no need for training a Generative Adversarial Network (GAN), the proposed method mainly uses the gradient maps from a well-trained CNN to represent the cost, where the original cost map of the steganography is adopted to indicate the embedding positions. This method will smooth the gradient maps before adjusting the cost, which solves the boundary problem of the CNNs having multiple subnets. Extensive experiments have been carried out to validate the effectiveness of the proposed method, which provides state-of-the-art performance. In addition, compared to existing work, the proposed method is effcient in computing time as well. In short, this thesis has made three major contributions to image steganography and steganalysis by using perceptual modelling and machine learning. A novel cost function and a post-cost-optimization function have been proposed for adaptive spatial image steganography, which helps protect the secret messages. For image steganalysis, a new CNN architecture has also been proposed, which utilizes multiple techniques for providing state of-the-art performance. Future directions are also discussed for indicating potential research

    Statistical Tools for Digital Image Forensics

    Get PDF
    A digitally altered image, often leaving no visual clues of having been tampered with, can be indistinguishable from an authentic image. The tampering, however, may disturb some underlying statistical properties of the image. Under this assumption, we propose five techniques that quantify and detect statistical perturbations found in different forms of tampered images: (1) re-sampled images (e.g., scaled or rotated); (2) manipulated color filter array interpolated images; (3) double JPEG compressed images; (4) images with duplicated regions; and (5) images with inconsistent noise patterns. These techniques work in the absence of any embedded watermarks or signatures. For each technique we develop the theoretical foundation, show its effectiveness on credible forgeries, and analyze its sensitivity and robustness to simple counter-attacks

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area

    An improved randomization of a multi-blocking jpeg based steganographic system.

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2010.Steganography is classified as the art of hiding information. In a digital context, this refers to our ability to hide secret messages within innocent digital cover data. The digital domain offers many opportunities for possible cover mediums, such as cloud based hiding (saving secret information within the internet and its structure), image based hiding, video and audio based hiding, text based documents as well as the potential of hiding within any set of compressed data. This dissertation focuses on the image based domain and investigates currently available image based steganographic techniques. After a review of the history of the field, and a detailed survey of currently available JPEG based steganographic systems, the thesis focuses on the systems currently considered to be secure and introduces mechanisms that have been developed to detect them. The dissertation presents a newly developed system that is designed to counter act the current weakness in the YASS JPEG based steganographic system. By introducing two new levels of randomization to the embedding process, the proposed system offers security benefits over YASS. The introduction of randomization to the B‐block sizes as well as the E‐block sizes used in the embedding process aids in increasing security and the potential for new, larger E‐block sizes also aids in providing an increased set of candidate coefficients to be used for embedding. The dissertation also introduces a new embedding scheme which focuses on hiding in medium frequency coefficients. By hiding in these medium frequency coefficients, we allow for more aggressive embedding without risking more visual distortion but trade this off with a risk of higher error rates due to compression losses. Finally, the dissertation presents simulation aimed at testing the proposed system performance compared to other JPEG based steganographic systems with similar embedding properties. We show that the new system achieves an embedding capacity of 1.6, which represents round a 7 times improvement over YASS. We also show that the new system, although introducing more bits in error per B‐block, successfully allows for the embedding of up to 2 bits per B‐block more than YASS at a similar error rate per B‐block. We conclude the results by demonstrating the new systems ability to resist detection both through human observation, via a survey, as well as resist computer aided analysis

    Handbook of Digital Face Manipulation and Detection

    Get PDF
    This open access book provides the first comprehensive collection of studies dealing with the hot topic of digital face manipulation such as DeepFakes, Face Morphing, or Reenactment. It combines the research fields of biometrics and media forensics including contributions from academia and industry. Appealing to a broad readership, introductory chapters provide a comprehensive overview of the topic, which address readers wishing to gain a brief overview of the state-of-the-art. Subsequent chapters, which delve deeper into various research challenges, are oriented towards advanced readers. Moreover, the book provides a good starting point for young researchers as well as a reference guide pointing at further literature. Hence, the primary readership is academic institutions and industry currently involved in digital face manipulation and detection. The book could easily be used as a recommended text for courses in image processing, machine learning, media forensics, biometrics, and the general security area

    Fundamental Limits in Multimedia Forensics and Anti-forensics

    Get PDF
    As the use of multimedia editing tools increases, people become questioning the authenticity of multimedia content. This is specially a big concern for authorities, such as law enforcement, news reporter and government, who constantly use multimedia evidence to make critical decisions. To verify the authenticity of multimedia content, many forensic techniques have been proposed to identify the processing history of multimedia content under question. However, as new technologies emerge and more complicated scenarios are considered, the limitation of multimedia forensics has been gradually realized by forensic researchers. It is the inevitable trend in multimedia forensics to explore the fundamental limits. In this dissertation, we propose several theoretical frameworks to study the fundamental limits in various forensic problems. Specifically, we begin by developing empirical forensic techniques to deal with the limitation of existing techniques due to the emergence of new technology, compressive sensing. Then, we go one step further to explore the fundamental limit of forensic performance. Two types of forensic problems have been examined. In operation forensics, we propose an information theoretical framework and define forensicability as the maximum information features contain about hypotheses of processing histories. Based on this framework, we have found the maximum number of JPEG compressions one can detect. In order forensics, an information theoretical criterion is proposed to determine when we can and cannot detect the order of manipulation operations that have been applied on multimedia content. Additionally, we have examined the fundamental tradeoffs in multimedia antiforensics, where attacking techniques are developed by forgers to conceal manipulation fingerprints and confuse forensic investigations. In this field, we have defined concealability as the effectiveness of anti-forensics concealing manipulation fingerprints. Then, a tradeoff between concealability, rate and distortion is proposed and characterized for compression anti-forensics, which provides us valuable insights of how forgers may behave under their best strategy

    Robust steganographic techniques for secure biometric-based remote authentication

    Get PDF
    Biometrics are widely accepted as the most reliable proof of identity, entitlement to services, and for crime-related forensics. Using biometrics for remote authentication is becoming an essential requirement for the development of knowledge-based economy in the digital age. Ensuring security and integrity of the biometric data or templates is critical to the success of deployment especially because once the data compromised the whole authentication system is compromised with serious consequences for identity theft, fraud as well as loss of privacy. Protecting biometric data whether stored in databases or transmitted over an open network channel is a serious challenge and cryptography may not be the answer. The main premise of this thesis is that Digital Steganography can provide an alternative security solutions that can be exploited to deal with the biometric transmission problem. The main objective of the thesis is to design, develop and test steganographic tools to support remote biometric authentication. We focus on investigating the selection of biometrics feature representations suitable for hiding in natural cover images and designing steganography systems that are specific for hiding such biometric data rather than being suitable for general purpose. The embedding schemes are expected to have high security characteristics resistant to several types of steganalysis tools and maintain accuracy of recognition post embedding. We shall limit our investigations to embedding face biometrics, but the same challenges and approaches should help in developing similar embedding schemes for other biometrics. To achieve this our investigations and proposals are done in different directions which explain in the rest of this section. Reviewing the literature on the state-of-art in steganography has revealed a rich source of theoretical work and creative approaches that have helped generate a variety of embedding schemes as well as steganalysis tools but almost all focused on embedding random looking secrets. The review greatly helped in identifying the main challenges in the field and the main criteria for success in terms of difficult to reconcile requirements on embedding capacity, efficiency of embedding, robustness against steganalysis attacks, and stego image quality. On the biometrics front the review revealed another rich source of different face biometric feature vectors. The review helped shaping our primary objectives as (1) identifying a binarised face feature factor with high discriminating power that is susceptible to embedding in images, (2) develop a special purpose content-based steganography schemes that can benefit from the well-defined structure of the face biometric data in the embedding procedure while preserving accuracy without leaking information about the source biometric data, and (3) conduct sufficient sets of experiments to test the performance of the developed schemes, highlight the advantages as well as limitations, if any, of the developed system with regards to the above mentioned criteria. We argue that the well-known LBP histogram face biometric scheme satisfies the desired properties and we demonstrate that our new more efficient wavelet based versions called LBPH patterns is much more compact and has improved accuracy. In fact the wavelet version schemes reduce the number of features by 22% to 72% of the original version of LBP scheme guaranteeing better invisibility post embedding. We shall then develop 2 steganographic schemes. The first is the LSB-witness is a general purpose scheme that avoids changing the LSB-plane guaranteeing robustness against targeted steganalysis tools, but establish the viability of using steganography for remote biometric-based recognition. However, it may modify the 2nd LSB of cover pixels as a witness for the presence of the secret bits in the 1st LSB and thereby has some disadvantages with regards to the stego image quality. Our search for a new scheme that exploits the structure of the secret face LBPH patterns for improved stego image quality has led to the development of the first content-based steganography scheme. Embedding is guided by searching for similarities between the LBPH patterns and the structure of the cover image LSB bit-planes partitioned into 8-bit or 4-bit patterns. We shall demonstrate the excellent benefits of using content-based embedding scheme in terms of improved stego image quality, greatly reduced payload, reduced lower bound on optimal embedding efficiency, robustness against all targeted steganalysis tools. Unfortunately our scheme was not robust against the blind or universal SRM steganalysis tool. However we demonstrated robustness against SRM at low payload when our scheme was modified by restricting embedding to edge and textured pixels. The low payload in this case is sufficient to embed a secret full face LBPH patterns. Our work opens new exciting opportunities to build successful real applications of content-based steganography and presents plenty of research challenges
    corecore