81 research outputs found

    Detailed simulations of cell biology with Smoldyn 2.1.

    Get PDF
    Most cellular processes depend on intracellular locations and random collisions of individual protein molecules. To model these processes, we developed algorithms to simulate the diffusion, membrane interactions, and reactions of individual molecules, and implemented these in the Smoldyn program. Compared to the popular MCell and ChemCell simulators, we found that Smoldyn was in many cases more accurate, more computationally efficient, and easier to use. Using Smoldyn, we modeled pheromone response system signaling among yeast cells of opposite mating type. This model showed that secreted Bar1 protease might help a cell identify the fittest mating partner by sharpening the pheromone concentration gradient. This model involved about 200,000 protein molecules, about 7000 cubic microns of volume, and about 75 minutes of simulated time; it took about 10 hours to run. Over the next several years, as faster computers become available, Smoldyn will allow researchers to model and explore systems the size of entire bacterial and smaller eukaryotic cells

    On the Statistics of Reaction-Diffusion Simulations for Molecular Communication

    Full text link
    A molecule traveling in a realistic propagation environment can experience stochastic interactions with other molecules and the environment boundary. The statistical behavior of some isolated phenomena, such as dilute unbounded molecular diffusion, are well understood. However, the coupling of multiple interactions can impede closed-form analysis, such that simulations are required to determine the statistics. This paper compares the statistics of molecular reaction-diffusion simulation models from the perspective of molecular communication systems. Microscopic methods track the location and state of every molecule, whereas mesoscopic methods partition the environment into virtual containers that hold molecules. The properties of each model are described and compared with a hybrid of both models. Simulation results also assess the accuracy of Poisson and Gaussian approximations of the underlying Binomial statistics.Comment: 6 pages, 1 table, 10 figures. Submitted to the 2nd ACM International Conference on Nanoscale Computing and Communication (ACM NANOCOM 2015) on May 16, 201

    Multi-Scale Stochastic Simulation for Diffusive Molecular Communication

    Full text link
    Recently, hybrid models have emerged that combine microscopic and mesoscopic regimes in a single stochastic reaction-diffusion simulation. Microscopic simulations track every individual molecule and are generally more accurate. Mesoscopic simulations partition the environment into subvolumes, track when molecules move between adjacent subvolumes, and are generally more computationally efficient. In this paper, we present the foundation of a multi-scale stochastic simulator from the perspective of molecular communication, for both mesoscopic and hybrid models, where we emphasize simulation accuracy at the receiver and efficiency in regions that are far from the communication link. Our multi-scale models use subvolumes of different sizes, between which we derive the diffusion event transition rate. Simulation results compare the accuracy and efficiency of traditional approaches with that of a regular hybrid method and with those of our proposed multi-scale methods.Comment: 7 pages, 2 tables, 6 figures. Will be presented at the 2015 IEEE International Conference on Communications (ICC) in June 201

    Analysis of Brownian Dynamics Simulations of Reversible Bimolecular Reactions

    Full text link
    A class of Brownian dynamics algorithms for stochastic reaction-diffusion models which include reversible bimolecular reactions is presented and analyzed. The method is a generalization of the λ\lambda--\newrho model for irreversible bimolecular reactions which was introduced in [arXiv:0903.1298]. The formulae relating the experimentally measurable quantities (reaction rate constants and diffusion constants) with the algorithm parameters are derived. The probability of geminate recombination is also investigated.Comment: 16 pages, 13 figures, submitted to SIAM Appl Mat

    On the Reaction Diffusion Master Equation in the Microscopic Limit

    Full text link
    Stochastic modeling of reaction-diffusion kinetics has emerged as a powerful theoretical tool in the study of biochemical reaction networks. Two frequently employed models are the particle-tracking Smoluchowski framework and the on-lattice Reaction-Diffusion Master Equation (RDME) framework. As the mesh size goes from coarse to fine, the RDME initially becomes more accurate. However, recent developments have shown that it will become increasingly inaccurate compared to the Smoluchowski model as the lattice spacing becomes very fine. In this paper we give a new, general and simple argument for why the RDME breaks down. Our analysis reveals a hard limit on the voxel size for which no local RDME can agree with the Smoluchowski model

    The Two Regime method for optimizing stochastic reaction-diffusion simulations

    Get PDF
    The computer simulation of stochastic reaction-diffusion processes in biology is often done using either compartment-based (spatially discretized) simulations or molecular-based (Brownian dynamics) approaches. Compartment-based approaches can yield quick and accurate mesoscopic results but lack the level of detail that is characteristic of the more computationally intensive molecular-based models. Often microscopic detail is only required in a small region but currently the best way to achieve this detail is to use a resource intensive model over the whole domain. We introduce the Two Regime Method (TRM) in which a molecular-based algorithm is used in part of the computational domain and a compartment-based approach is used elsewhere in the computational domain. We apply the TRM to two test problems including a model from developmental biology. We thereby show that the TRM is accurate and subsequently may be used to inspect both mesoscopic and microscopic detail of reaction diffusion simulations according to the demands of the modeller

    Analysis of Brownian dynamics simulations of reversible biomolecular reactions

    Get PDF
    A class of Brownian dynamics algorithms for stochastic reaction-diffusion models which include reversible bimolecular reactions is presented and analyzed. The method is a generalization of the λ-rho model for irreversible bimolecular reactions which was introduced in [11]. The formulae relating the experimentally measurable quantities (reaction rate constants and diffusion constants) with the algorithm parameters are derived. The probability of geminate recombination is also investigated
    • …
    corecore