62,869 research outputs found

    Human computer interaction with a PIM application: Merging activity, location and social setting into context

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2009 Springer VerlagPersonal Information Managers exploit the ubiquitous paradigm in mobile computing technology to integrate services and programs for business and leisure. Recognizing that every situation is constituted by information and events, this context will vary depending on the situation users are in, and the tasks they are about to commit. The value of context as a source of information is highly recognized and for individual dimensions context has been both conceptually described and prototypes implemented. The novelty in this paper is a new implementation of context by integrating three dimensions of context: social information, activity information and geographical position. Based on an application developed for Microsoft Window Mobile these three dimensions of context are explored and implemented in an application for mobile telephone users. Experiment conducted show the viability of tailoring contextual information in three dimensions to provide user with timely and relevant information

    Attitudes, meaning, emotion and motivation in design for behaviour change

    Get PDF
    Copyright @ 2012 Social Science Electronic PublishingThis paper discusses some distinct -- but related -- psychological concepts which are relevant to design for behaviour change, but of which some, at least, are not necessarily within the scope of 'conventional' interaction design. They may fall superfi cially along the cognitive blade of Simon's scissors (1990), dealing with users' thought processes rather than the contextual interaction environment itself, but the interaction of meaning and form demonstrated by product semantics (section 2.1) makes it clear that cognition depends on context: the scissors must work together. While design for emotion (Desmet and Hekkert, 2009) is enjoying increasing attention and practical application, including in behaviour change applications (e.g. Visser et al, 2011), influencing and supporting motivation through design is underexplored except by a few pioneers such as Bisset (2010), while the complexity of work on attitudes and persuasion has not necessarily lent itself to practical design applications to the extent that it might. Nevertheless, much public discourse on behaviour change persists with a preoccupation with measuring and 'changing' attitudes

    Towards a multidisciplinary user-centric design framework for context-aware applications

    Get PDF
    The primary aim of this article is to review and merge theories of context within linguistics, computer science, and psychology, to propose a multidisciplinary model of context that would facilitate application developers in developing richer descriptions or scenarios of how a context-aware device may be used in various dynamic mobile settings. More specifically, the aim is to:1. Investigate different viewpoints of context within linguistics, computer science, and psychology, to develop summary condensed models for each discipline. 2. Investigate the impact of contrasting viewpoints on the usability of context-aware applications. 3. Investigate the extent to which single-discipline models can be merged and the benefits and insightfulness of a merged model for designing mobile computers. 4. Investigate the extent to which a proposed multidisciplinary modelcan be applied to specific applications of context-aware computing

    Toward a multidisciplinary model of context to support context-aware computing

    Get PDF
    Capturing, defining, and modeling the essence of context are challenging, compelling, and prominent issues for interdisciplinary research and discussion. The roots of its emergence lie in the inconsistencies and ambivalent definitions across and within different research specializations (e.g., philosophy, psychology, pragmatics, linguistics, computer science, and artificial intelligence). Within the area of computer science, the advent of mobile context-aware computing has stimulated broad and contrasting interpretations due to the shift from traditional static desktop computing to heterogeneous mobile environments. This transition poses many challenging, complex, and largely unanswered research issues relating to contextual interactions and usability. To address those issues, many researchers strongly encourage a multidisciplinary approach. The primary aim of this article is to review and unify theories of context within linguistics, computer science, and psychology. Summary models within each discipline are used to propose an outline and detailed multidisciplinary model of context involving (a) the differentiation of focal and contextual aspects of the user and application's world, (b) the separation of meaningful and incidental dimensions, and (c) important user and application processes. The models provide an important foundation in which complex mobile scenarios can be conceptualized and key human and social issues can be identified. The models were then applied to different applications of context-aware computing involving user communities and mobile tourist guides. The authors' future work involves developing a user-centered multidisciplinary design framework (based on their proposed models). This will be used to design a large-scale user study investigating the usability issues of a context-aware mobile computing navigation aid for visually impaired people

    Online task design on the Master of Teaching

    Get PDF

    Towards delay-aware container-based Service Function Chaining in Fog Computing

    Get PDF
    Recently, the fifth-generation mobile network (5G) is getting significant attention. Empowered by Network Function Virtualization (NFV), 5G networks aim to support diverse services coming from different business verticals (e.g. Smart Cities, Automotive, etc). To fully leverage on NFV, services must be connected in a specific order forming a Service Function Chain (SFC). SFCs allow mobile operators to benefit from the high flexibility and low operational costs introduced by network softwarization. Additionally, Cloud computing is evolving towards a distributed paradigm called Fog Computing, which aims to provide a distributed cloud infrastructure by placing computational resources close to end-users. However, most SFC research only focuses on Multi-access Edge Computing (MEC) use cases where mobile operators aim to deploy services close to end-users. Bi-directional communication between Edges and Cloud are not considered in MEC, which in contrast is highly important in a Fog environment as in distributed anomaly detection services. Therefore, in this paper, we propose an SFC controller to optimize the placement of service chains in Fog environments, specifically tailored for Smart City use cases. Our approach has been validated on the Kubernetes platform, an open-source orchestrator for the automatic deployment of micro-services. Our SFC controller has been implemented as an extension to the scheduling features available in Kubernetes, enabling the efficient provisioning of container-based SFCs while optimizing resource allocation and reducing the end-to-end (E2E) latency. Results show that the proposed approach can lower the network latency up to 18% for the studied use case while conserving bandwidth when compared to the default scheduling mechanism

    A generic architecture style for self-adaptive cyber-physical systems

    Get PDF
    Die aktuellen Konzepte zur Gestaltung von Regelungssystemen basieren auf dynamischen Verhaltensmodellen, die mathematische Ansätze wie Differentialgleichungen zur Ableitung der entsprechenden Funktionen verwenden. Diese Konzepte stoßen jedoch aufgrund der zunehmenden Systemkomplexität allmählich an ihre Grenzen. Zusammen mit der Entwicklung dieser Konzepte entsteht eine Architekturevolution der Regelungssysteme. In dieser Dissertation wird eine Taxonomie definiert, um die genannte Architekturevolution anhand eines typischen Beispiels, der adaptiven Geschwindigkeitsregelung (ACC), zu veranschaulichen. Aktuelle ACC-Varianten, die auf der Regelungstheorie basieren, werden in Bezug auf ihre Architekturen analysiert. Die Analyseergebnisse zeigen, dass das zukünftige Regelungssystem im ACC eine umfangreichere Selbstadaptationsfähigkeit und Skalierbarkeit erfordert. Dafür sind kompliziertere Algorithmen mit unterschiedlichen Berechnungsmechanismen erforderlich. Somit wird die Systemkomplexität erhöht und führt dazu, dass das zukünftige Regelungssystem zu einem selbstadaptiven cyber-physischen System wird und signifikante Herausforderungen für die Architekturgestaltung des Systems darstellt. Inspiriert durch Ansätze des Software-Engineering zur Gestaltung von Architekturen von softwareintensiven Systemen wird in dieser Dissertation ein generischer Architekturstil entwickelt. Der entwickelte Architekturstil dient als Vorlage, um vernetzte Architekturen mit Verfolgung der entwickelten Designprinzipien nicht nur für die aktuellen Regelungssysteme, sondern auch für selbstadaptiven cyber-physischen Systeme in der Zukunft zu konstruieren. Unterschiedliche Auslösemechanismen und Kommunikationsparadigmen zur Gestaltung der dynamischen Verhalten von Komponenten sind in der vernetzten Architektur anwendbar. Zur Bewertung der Realisierbarkeit des Architekturstils werden aktuelle ACCs erneut aufgenommen, um entsprechende logische Architekturen abzuleiten und die Architekturkonsistenz im Vergleich zu den originalen Architekturen basierend auf der Regelungstheorie (z. B. in Form von Blockdiagrammen) zu untersuchen. Durch die Anwendung des entwickelten generischen Architekturstils wird in dieser Dissertation eine künstliche kognitive Geschwindigkeitsregelung (ACCC) als zukünftige ACC-Variante entworfen, implementiert und evaluiert. Die Evaluationsergebnisse zeigen signifikante Leistungsverbesserungen des ACCC im Vergleich zum menschlichen Fahrer und aktuellen ACC-Varianten.Current concepts of designing automatic control systems rely on dynamic behavioral modeling by using mathematical approaches like differential equations to derive corresponding functions, and slowly reach limitations due to increasing system complexity. Along with the development of these concepts, an architectural evolution of automatic control systems is raised. This dissertation defines a taxonomy to illustrate the aforementioned architectural evolution relying on a typical example of control application: adaptive cruise control (ACC). Current ACC variants, with their architectures considering control theory, are analyzed. The analysis results indicate that the future automatic control system in ACC requires more substantial self-adaptation capability and scalability. For this purpose, more complicated algorithms requiring different computation mechanisms must be integrated into the system and further increase system complexity. This makes the future automatic control system evolve into a self-adaptive cyber-physical system and consistitutes significant challenges for the system’s architecture design. Inspired by software engineering approaches for designing architectures of software-intensive systems, a generic architecture style is proposed. The proposed architecture style serves as a template by following the developed design principle to construct networked architectures not only for the current automatic control systems but also for self-adaptive cyber-physical systems in the future. Different triggering mechanisms and communication paradigms for designing dynamic behaviors are applicable in the networked architecture. To evaluate feasibility of the architecture style, current ACCs are retaken to derive corresponding logical architectures and examine architectural consistency compared to the previous architectures considering the control theory (e.g., in the form of block diagrams). By applying the proposed generic architecture style, an artificial cognitive cruise control (ACCC) is designed, implemented, and evaluated as a future ACC in this dissertation. The evaluation results show significant performance improvements in the ACCC compared to the human driver and current ACC variants
    corecore