90,967 research outputs found

    An enumerative formula for the spherical cap discrepancy

    Get PDF
    The spherical cap discrepancy is a widely used measure for how uniformly a sample of points on the sphere is distributed. Being hard to compute, this discrepancy measure is typically replaced by some lower or upper estimates when designing optimal sampling schemes for the uniform distribution on the sphere. In this paper, we provide a fully explicit, easy to implement enumerative formula for the spherical cap discrepancy. Not surprisingly, this formula is of combinatorial nature and, thus, its application is limited to spheres of small dimension and moderate sample sizes. Nonetheless, it may serve as a useful calibrating tool for testing the efficiency of sampling schemes and its explicit character might be useful also to establish necessary optimality conditions when minimizing the discrepancy with respect to a sample of given size

    Single- and Multiple-Shell Uniform Sampling Schemes for Diffusion MRI Using Spherical Codes

    Get PDF
    In diffusion MRI (dMRI), a good sampling scheme is important for efficient acquisition and robust reconstruction. Diffusion weighted signal is normally acquired on single or multiple shells in q-space. Signal samples are typically distributed uniformly on different shells to make them invariant to the orientation of structures within tissue, or the laboratory coordinate frame. The Electrostatic Energy Minimization (EEM) method, originally proposed for single shell sampling scheme in dMRI, was recently generalized to multi-shell schemes, called Generalized EEM (GEEM). GEEM has been successfully used in the Human Connectome Project (HCP). However, EEM does not directly address the goal of optimal sampling, i.e., achieving large angular separation between sampling points. In this paper, we propose a more natural formulation, called Spherical Code (SC), to directly maximize the minimal angle between different samples in single or multiple shells. We consider not only continuous problems to design single or multiple shell sampling schemes, but also discrete problems to uniformly extract sub-sampled schemes from an existing single or multiple shell scheme, and to order samples in an existing scheme. We propose five algorithms to solve the above problems, including an incremental SC (ISC), a sophisticated greedy algorithm called Iterative Maximum Overlap Construction (IMOC), an 1-Opt greedy method, a Mixed Integer Linear Programming (MILP) method, and a Constrained Non-Linear Optimization (CNLO) method. To our knowledge, this is the first work to use the SC formulation for single or multiple shell sampling schemes in dMRI. Experimental results indicate that SC methods obtain larger angular separation and better rotational invariance than the state-of-the-art EEM and GEEM. The related codes and a tutorial have been released in DMRITool.Comment: Accepted by IEEE transactions on Medical Imaging. Codes have been released in dmritool https://diffusionmritool.github.io/tutorial_qspacesampling.htm

    Optimal experiment design in a filtering context with application to sampled network data

    Full text link
    We examine the problem of optimal design in the context of filtering multiple random walks. Specifically, we define the steady state E-optimal design criterion and show that the underlying optimization problem leads to a second order cone program. The developed methodology is applied to tracking network flow volumes using sampled data, where the design variable corresponds to controlling the sampling rate. The optimal design is numerically compared to a myopic and a naive strategy. Finally, we relate our work to the general problem of steady state optimal design for state space models.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS283 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore