29 research outputs found

    Surface coverage in wireless sensor networks

    Get PDF
    Abstract—Coverage is a fundamental problem in Wireless Sensor Networks (WSNs). Existing studies on this topic focus on 2D ideal plane coverage and 3D full space coverage. In many real world applications, the 3D surface of a targeted Field of Interest is complex, however, existing studies do not provide promising results. In this paper, we propose a new coverage model called surface coverage. In surface coverage, the targeted Field of Interest is a surface in 3D space and sensors can be deployed only on the surface. We show that existing 2D plane coverage is merely a special case of surface coverage. Simulations point out that existing sensor deployment schemes for a 2D plane cannot be directly applied to surface coverage cases. In this paper, we target two problems assuming surface coverage to be true. One, under stochastic deployment, how many sensors are needed to reach a certain expected coverage ratio? Two, if sensor deployment can be planned, what is the optimal deployment strategy with guaranteed full coverage with the least number of sensors? We show that the latter problem is NP-complete and propose three approximation algorithms. We further prove that these algorithms have a provable approximation ratio. We also conduct comprehensive simulations to evaluate the performance of the proposed algorithms. I

    Achieving Crossed Strong Barrier Coverage in Wireless Sensor Network

    Get PDF
    Barrier coverage has been widely used to detect intrusions in wireless sensor networks (WSNs). It can fulfill the monitoring task while extending the lifetime of the network. Though barrier coverage in WSNs has been intensively studied in recent years, previous research failed to consider the problem of intrusion in transversal directions. If an intruder knows the deployment configuration of sensor nodes, then there is a high probability that it may traverse the whole target region from particular directions, without being detected. In this paper, we introduce the concept of crossed barrier coverage that can overcome this defect. We prove that the problem of finding the maximum number of crossed barriers is NP-hard and integer linear programming (ILP) is used to formulate the optimization problem. The branch-and-bound algorithm is adopted to determine the maximum number of crossed barriers. In addition, we also propose a multi-round shortest path algorithm (MSPA) to solve the optimization problem, which works heuristically to guarantee efficiency while maintaining near-optimal solutions. Several conventional algorithms for finding the maximum number of disjoint strong barriers are also modified to solve the crossed barrier problem and for the purpose of comparison. Extensive simulation studies demonstrate the effectiveness of MSPA

    A Localized Coverage Preserving Protocol for Wireless Sensor Networks

    Get PDF
    In a randomly deployed and large scale wireless sensor network, coverage-redundant nodes consume much unnecessary energy. As a result, turning off these redundant nodes can prolong the network lifetime, while maintaining the degree of sensing coverage with a limited number of on-duty nodes. None of the off-duty eligibility rules in the literature, however, are sufficient and necessary conditions for eligible nodes. Hence redundancy or blind points might be incurred. In this paper we propose a complete Eligibility Rule based on Perimeter Coverage (ERPC) for a node to determine its eligibility for sleeping. ERPC has a computational complexity of O(N2log(N)), lower than the eligibility rule in the Coverage Control Protocol (CCP), O(N3), where N is the number of neighboring nodes. We then present a Coverage Preserving Protocol (CPP) to schedule the work state of eligible nodes. The main advantage of CPP over the Ottawa protocol lies in its ability to configure the network to any specific coverage degree, while the Ottawa protocol does not support different coverage configuration. Moreover, as a localized protocol, CPP has better adaptability to dynamic topologies than centralized protocols. Simulation results indicate that CPP can preserve network coverage with fewer active nodes than the Ottawa protocol. In addition, CPP is capable of identifying all the eligible nodes exactly while the CCP protocol might result in blind points due to error decisions. Quantitative analysis and experiments demonstrate that CPP can extend the network lifetime significantly while maintaining a given coverage degree

    Barrier information coverage with wireless sensors

    Get PDF
    Abstract—Sensor networks have been deployed for many barrier coverage applications such as intrusion detection and border surveillance. In these applications, it is critical to operate a sensor network in an energy-efficient manner so the barrier can be covered with as few active sensors as possible. In this paper, we study barrier information coverage which exploits collaborations and information fusion between neighboring sensors to reduce the number of active sensors needed to cover a barrier and hence to prolong the network lifetime. Moreover, we propose a practical solution to identify the barrier information coverage set which can information-cover the barrier with a small number of active sensors. The effectiveness of the proposed solution is demonstrated by numerical and simulation results. I

    Energy-Efficient Algorithms for k-Barrier Coverage In Mobile Sensor Networks

    Get PDF
    Barrier coverage is an appropriate coverage model for intrusion detection by constructing sensor barriers in wireless sensor networks. In this paper, we focus on the problem how to relocate mobile sensors to construct k sensor barriers with minimum energy consumption. We first analyze this problem, give its Integer Linear Programming(ILP) model and prove it to be NP-hard. Then we devise an approximation algorithm AHGB to construct one sensor barrier energy-efficiently, simulations show that the solution of AHGB is close to the optimal solution. Based on AHGB, a Divide-and-Conquer algorithm is proposed to achieve k-barrier coverage for large sensor networks. Simulations demonstrate the effectiveness of the Divide-and-Conquer algorithm
    corecore